Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 黎曲峰 | en_US |
dc.contributor.author | Li, Chu-Feng | en_US |
dc.contributor.author | 黃興進 | en_US |
dc.contributor.author | 楊晴雯 | en_US |
dc.contributor.author | Hwang, Hsin-Ginn | en_US |
dc.contributor.author | Yang, Ching-Wen | en_US |
dc.date.accessioned | 2014-12-12T02:42:44Z | - |
dc.date.available | 2014-12-12T02:42:44Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070153406 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/75198 | - |
dc.description.abstract | 如今隨著雲端運算技術的日益發展,使得資料的儲存與使用方式得以無遠弗屆,從而衍生出巨量資料的相關議題。而台灣衛生福利部為了促進民眾健康水準與提升醫療資源的使用率,近年來不斷地積極推動各地醫療院所實施電子病歷交換,並成立電子病歷交換中心來協助查詢各醫院的病歷索引。然而目前實施交換的電子病歷只有基本的四大單張報告(出院病摘、門診用藥、血液檢驗、醫學影像),要達到真正的電子病歷交換還有很長的一段距離。並且醫學資訊涵蓋廣泛,要如何統整與管理不同醫院之間的資料,勢必會是一項相當大的挑戰。 是故本研究使用現今主流的巨量資料分析工具Hadoop,結合HBase實作出一套適合巨量電子病歷資料的交換系統,用以解決龐大且複雜的病歷資料。當中為了加速電子病歷的儲存與查詢,系統中利用MapReduce的分散式處理機制,來加速電子病歷資料的處理。此外為了讓電子病歷能快速的儲存於HBase中,本研究根據病歷交換資料的特性設計出相關rowkey與表格架構,藉此提升HBase的儲存效率。在實驗環境中,我們依據所設計的HBase表格架構,探討在不同的rowkey與column family之下,對於HBase效能的影響。實驗結果顯示,本研究所設計的HBase表格架構在處理巨量電子病歷的資料上,具有良好的處理效率。最終期望透過本研究的發現,能夠讓台灣衛生福利部考量將電子病歷導入巨量資料的環境當中,加速不同醫療院所之間病人資料的交換,以期能減少醫療資源的重複使用、提升醫療作業效率,進而給予民眾更好的醫療照護。 | zh_TW |
dc.description.abstract | As the rise of cloud computing, it makes the data storage and usage can be in an efficient way. However, it also led the management of data more complexity. Existing Health Information Systems for Electronic Medical Records (EMR) storage are not enough for the increasing amount of patients’ health data. Hadoop is designed to storage very large data sets and allowing install in a normal personal computer which can be a feasible solution way to solve the problems faced in currently healthcare systems. In this research, we proposed a Hadoop EMR Exchange System (HEMR) which uses HBase database as the medical records storage method. In order to encourage healthcare facilities to use and exchange EMR in our proposed system, we developing several MapReduce jobs to accelerate the exchange speed on multiple medical records. We hope this exchange mechanism which proposed in this paper can be using in the different kinds of healthcare facilities in Taiwan, helping in analyze patients’ EMR data, and finally promote patient health. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hadoop | zh_TW |
dc.subject | HBase | zh_TW |
dc.subject | 巨量資料 | zh_TW |
dc.subject | 雲端運算 | zh_TW |
dc.subject | 電子病歷 | zh_TW |
dc.subject | Hadoop | en_US |
dc.subject | HBase | en_US |
dc.subject | Big Data | en_US |
dc.subject | Cloud Computing | en_US |
dc.subject | Electronic Medical Record | en_US |
dc.title | 以Hadoop平台為框架加速電子病歷交換之系統設計 | zh_TW |
dc.title | A System Design Based on Hadoop Platform to Accelerate the Exchange of Electronic Medical Records | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
Appears in Collections: | Thesis |