標題: | 用三種顏色點著色的非空問題 Nonemptiness problems of corner-coloring with three colors |
作者: | 黃雪蓮 Huang, Hsueh-Lien 林松山 Lin, Song-Sun 應用數學系數學建模與科學計算碩士班 |
關鍵字: | 非空問題;Nonemptiness problems |
公開日期: | 2013 |
摘要: | 這個研究探討用三種顏色來著點的非空性問題。
點著色中,方格中每個點從三種顏色中找一種顏色來著色,
相接的點是一樣的顏色就可以接起來。
非空問題是給定一組tile 後,是否可以用這組tile 去拼出
整個平面。而王浩的猜測是說給定一組tile,如果可以用這
組tile 拼出全平面,就存在週期性的拼法去拼出來。
但當p大於等於6時,王浩的猜測被推翻了,而在p=2 時被證實是對的。
P=3,4,5 是我們還不知道的,我這篇主要探討當p=3 時王浩
的猜測會不會是對的。 This investigation studies nonemptiness problems of plane corner coloring with three colors. In the corner coloring of a plane, unit squares with colored corners that have one of p colors are arranged side by side such that the touching corners of the adjacent tiles have the same colors. Given a basic set of tiles, the nonemptiness problem is to determine whether or not Σ(ℬ)≠⌀ , where Σ(ℬ) is the set of all global patterns on ℤ2 that can be constructed from the tiles in ℬ. Wang's conjecture is that for any ℬ of tiles, if and only if P(ℬ)≠⌀ , where P(ℬ) is the set of all periodic patterns on ℤ2 that can be generated by the tiles in ℬ . When p>5, Wang's conjecture in corner coloring is known to be wrong. When p = 2, the conjecture is true. Therefore, p=3,4,5 are the cases we havn’t known yet. We study when p=3 whether Wang's conjecture can be hold or not. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070152301 http://hdl.handle.net/11536/75317 |
Appears in Collections: | Thesis |