Full metadata record
DC FieldValueLanguage
dc.contributor.author陳怡如en_US
dc.contributor.authorChen, Yi-Juen_US
dc.contributor.author黃兆祺en_US
dc.contributor.authorHwang, Ericen_US
dc.date.accessioned2014-12-12T02:43:17Z-
dc.date.available2014-12-12T02:43:17Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070157101en_US
dc.identifier.urihttp://hdl.handle.net/11536/75438-
dc.description.abstract神經系統的功能來自於神經元之間複雜的網絡連結。為了形成正確的神經迴路,每 顆神經元之間的連結必須被適當地調控,以建立有效的神經網路。神經突的發生 (neuritogenesis)能確保神經正確地連結,目前已知細胞骨架中的微管和微管相關蛋白 (microtubule-associated proteins)在神經突發生的調控中扮演了非常重要的角色。 在我們先前的研究中發現 TPX2,一個在細胞分裂中關鍵的微管相關蛋白,其在神經 的微管中具有很高的含量,並且在抑制 TPX2 的神經細胞中會有導致神經突縮短以及分 支減少的現象。以上結果指出 TPX2 在神經突的發生過程中扮演重要的角色。除此之外, 我們也發現到 TPX2 在小鼠海馬迴神經細胞中主要分布於中心體 。為了更進一步研究 TPX2 在神經突的發生過程中扮演重要的角色,我們也去研究 RHAMM,一個與 TPX2 有相 互作用的中心體蛋白。為了檢驗 RHAMM 在神經中的功能,我們以小鼠海馬迴神經細胞為 實驗對象,利用 shRNA 降低 RHAMM 在神經細胞中的含量。我們發現在神經細胞中抑制 RHAMM 也會導致神經突縮短。我們還發現 TPX2 和 RHAMM 都會分布在神經突上,並且似乎 都會和微管做結合。為了進一步研究 TPX2 和 RHAMM 如何在神經突發生過程影響微管的 功能,我們利用專門結合在微管正端的蛋白質 EB3 開發了一種微管正端動態分析平台。 將抑制 TPX2 或 RHAMM 的 shRNA 質體以及表現 EB3-mCherry 的質體轉染至小鼠海馬迴神 經細胞中,再透過顯微活細胞影像分析技術來觀察神經細胞中微管正端的動態。實驗結 果顯示在抑制了 TPX2 或 RHAMM 的神經細胞之神經突末端,皆有微管新生頻率下降的趨 勢。綜合以上這些研究結果顯示 TPX2 和 RHAMM 參與了神經突的發生過程,並很有可能 是藉由分布在神經突中且和微管有所作用的族群來達到調控目的。zh_TW
dc.description.abstractA functional nervous system depends on the intricate connections between neurons. To establish appropriate connections between neurons, the morphogenetic process of the neuron must be carefully regulated. Neuritogenesis is the morphogenetic process that regulates neurite extension and connection. It has been shown that the microtubule cytoskeleton and microtubule-associated proteins are indispensable for this process. In our previous study, we identified microtubule-associated protein, targeting protein for Xklp2 (TPX2), as one of the most abundant proteins on neuronal microtubules, depleting TPX2 in hippocampal neurons significantly reduced neurite length and branching. These data suggested that TPX2 plays a role in neuritogenesis. Interestingly, we observed that TPX2 localized primarily to the centrosome. To better understand the role of TPX2 in neuritogenesis, we investigated another centrosome-associated protein that interacts with TPX2 in mitotic cells, receptor for hyaluronan-mediated motility (RHAMM). To examine the function of RHAMM in neurons, we depleted RHAMM in hippocampal neurons using shRNA. Similar to TPX2 depletion, we observed a decrease in neurite length. Additionally, both TPX2 and RHAMM localized in neurites and appeared to interact with the microtubule cytoskeleton. To understand how these microtubule-associated proteins influence microtubules during neuritogenesis, we established a microtubule plus-end dynamics analyzing platform using the plus-end tracking protein EB3. EB3-mCherry motility was analyzed in TPX2- or RHAMM-depleted cortical neurons, and both depletion conditions resulted in the decrease in EB3 emanating frequency at the distal end of the neurites. These results indicated that TPX2 and RHAMM participated in the neuritogenesis process and may exert their effect via neurite-localized and microtubule-bound population.en_US
dc.language.isoen_USen_US
dc.subject微管正端動態分析平台zh_TW
dc.subject神經突zh_TW
dc.subject神經突發生過程zh_TW
dc.subjectmicrotubule plus-end dynamics analyzing platformen_US
dc.subjectneuriteen_US
dc.subjectneuritogenesisen_US
dc.title建立微管正端動態分析平台以研究TPX2和RHAMM在神經突發生過程之功能zh_TW
dc.titleEstablishing a microtubule plus-end dynamics analyzing platform to study TPX2 and RHAMM function during neuritogenesisen_US
dc.typeThesisen_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
Appears in Collections:Thesis