Full metadata record
DC FieldValueLanguage
dc.contributor.authorChu, Hone-Jayen_US
dc.contributor.authorChang, Liang-Chengen_US
dc.date.accessioned2014-12-08T15:09:54Z-
dc.date.available2014-12-08T15:09:54Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn0920-4741en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11269-008-9293-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/7564-
dc.description.abstractObtaining optimal solutions for time-varying groundwater remediation design is a challenging task. A novel procedure first employs input/output data sets obtained by constrained differential dynamic programming (CDDP). Then the Adaptive-Network-Based Fuzzy Inference System (ANFIS), which is a fuzzy inference system (FIS) implemented in the adaptive network framework, is applied to acquire time-varying pumping rates. Results demonstrate that the FIS is an efficient way of groundwater remediation design.en_US
dc.language.isoen_USen_US
dc.subjectCDDPen_US
dc.subjectANFISen_US
dc.subjectRemediation designen_US
dc.subjectGround wateren_US
dc.titleApplication of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Designen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11269-008-9293-1en_US
dc.identifier.journalWATER RESOURCES MANAGEMENTen_US
dc.citation.volume23en_US
dc.citation.issue4en_US
dc.citation.spage647en_US
dc.citation.epage660en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000263509900003-
dc.citation.woscount22-
Appears in Collections:Articles


Files in This Item:

  1. 000263509900003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.