Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chu, Hone-Jay | en_US |
dc.contributor.author | Chang, Liang-Cheng | en_US |
dc.date.accessioned | 2014-12-08T15:09:54Z | - |
dc.date.available | 2014-12-08T15:09:54Z | - |
dc.date.issued | 2009-03-01 | en_US |
dc.identifier.issn | 0920-4741 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s11269-008-9293-1 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7564 | - |
dc.description.abstract | Obtaining optimal solutions for time-varying groundwater remediation design is a challenging task. A novel procedure first employs input/output data sets obtained by constrained differential dynamic programming (CDDP). Then the Adaptive-Network-Based Fuzzy Inference System (ANFIS), which is a fuzzy inference system (FIS) implemented in the adaptive network framework, is applied to acquire time-varying pumping rates. Results demonstrate that the FIS is an efficient way of groundwater remediation design. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | CDDP | en_US |
dc.subject | ANFIS | en_US |
dc.subject | Remediation design | en_US |
dc.subject | Ground water | en_US |
dc.title | Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11269-008-9293-1 | en_US |
dc.identifier.journal | WATER RESOURCES MANAGEMENT | en_US |
dc.citation.volume | 23 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 647 | en_US |
dc.citation.epage | 660 | en_US |
dc.contributor.department | 土木工程學系 | zh_TW |
dc.contributor.department | Department of Civil Engineering | en_US |
dc.identifier.wosnumber | WOS:000263509900003 | - |
dc.citation.woscount | 22 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.