標題: | 電聚合PEDOT高分子對電極與P-型平板異質接面鈣鈦礦太陽能電池 Fabrication of mesoporous PEDOT films electrodes and p-type planar heterojunction perovskite solar cells |
作者: | 蔡佳宏 Chia-Hung Tsai 刁維光 Eric Wei-Guang Diau 應用化學系碩博士班 |
關鍵字: | 鈣鈦礦;太陽能電池;染料敏化太陽能電池;對電極;導電高分子;平板異質接面;PEDOT;perovskite;solar cell;counter electrode;P-type planar heterjunction junction |
公開日期: | 2014 |
摘要: | 第一個題目使用電化學方式聚合導電高分子PEDOT,藉由金屬表面處理的方式,可將基材導電度分佈明顯改善,利用導電度均勻分布基材作為工作電極,隨後調整循環伏安法沉積參數,便可穩定製作不同厚度不同形貌之多孔性導電高分子PEDOT;並應用於液態電解質染料敏化太陽能電池當中並得到良好的光電轉換效率;這是由於利用多孔性PEDOT總體接觸表面積極高的特性,可與電解液進行最多的接觸,有助於氧化態電解液還原反應的進行,在碘液介面可達到與傳統熱還原白金相同的催化效能,並在鈷(Co(III)/Co(II))氧化還原對作為電解液時,顯著降低對電極與電解液間的介面電阻,將填充因子大幅度從50%大幅提高至75%,使移動速率較緩慢的三價鈷有更高的機率被對電極接觸並且還原。
第二個題目為P型結構鈣鈦礦異質接面研究,此部分大略可分為三個部分,第一部分與成功大學郭宗枋進行實驗室合作,為我們實驗室跨入P型結構鈣鈦礦異質接面的第一步,在此合作內容中利用實驗室已成熟之兩步沉積技術製作的鈣鈦礦吸光層,並應用於多孔性PEDOT與市售PEDOT:PSS;其多孔性PEDOT為介觀異質接面而市售PEDOT為平板異質接面,兩種不同的接面使用相同蒸鍍製程的PCBM,進行元件效能比較並逐步調整個別參數,最終可在成大元件架構下達到3.7%,已很接近郭宗枋老師實驗室以PEDOT:PSS為基礎之最高效率(3.9%)。第二部分為利用鹵酸添加劑對三碘系統有機無機混成鈣鈦礦進行改質,將樹枝狀結構轉化為緻密的多晶平面結構,並以高解析度冷場掃描顯微鏡與X光繞射儀探討不同比率鹵酸添加劑之形貌變化與追蹤反應變化過程,本部分的特點為:使用簡易添加劑製作出具有非常穩定成膜性之鈣鈦礦前驅物溶液,並可使用一次旋塗法達到良好覆蓋率。第三部分則是起因於未經改質之鈣鈦礦覆蓋率極差,導致無法使用一步旋塗法製作元件,因此我們使用改質過後的鈣鈦礦前驅物混合溶液成功製作出平板異質接面元件,並搭配旋塗PCBM作為電子街壽曾,藉由個別參數搭配,目前已可更進一步將P型平板鈣鈦礦太陽能電池效率提升至8%以上。 The first topic is to use electrodeposition method to polymerize conductive polymer named PEDOT. Substrate was treated by metal particle to improve conductive distribution coverage that PEDOT can uniformly deposit by cyclic voltammetry parameter. Change the deposition windows can make different porous morphologies and thickness which has stable innate characterization. Because of the intrinsic high surface area in mesoporous PEDOT interface will contact more electrolyte than platinum. This advantage help proceed oxidation electrolyte reduction reaction.Our Mesoporous-PEDOT express high catalytic performance in both iodine and Cobalt electrolytes that better than conventional thermal reduction platinum and significantly reduce the charge transfer resistance in Cobalt redox that solar device fill factor was greatly improved from 50%to 75%.It means PEDOT has can higher contact probability to reduce electrolyte that overcome the drawback of cobalt electrolyte which moving rate was slowness. The second topic is the P-type perovskite heterojunction structure. This section can be roughly divided into three parts, the first part is lab cooperation with Prof. Guo of Cheng Kung University, it was the first step of our P-type perovskite solar cell researches. We used our already grow up perovskite technology: Sequential method to fabricate solar cell that we compare the difference of mesoporous PEDOT and commercial PEDOT:PSS. Mesoporous PEDOT is mesoscopic type and commercial PEDOT with planar heterojunction are fabricated using the same module in which same thermal evaporation is used to form PCBM layer. To compare these two devices the individual parameters were gradually adjusted and eventually efficiency reached 3.7% in the device architecture at National Cheng Kung University, very close to Prof.Guo's research on planar PEDOT: PSS-based with maximum efficiency (3.9%). In the second part, the hydriodic acid additives are used on three iodine based organic-inorganic hybrid perovskite system that significant modified the morphology and changed the dendritic structure into a dense polycrystalline planar structure. The results characterized by high-resolution cold field scanning microscopy and X-ray diffraction to explore changes in the morphology of different ratios of acid halide additives and track mechanism in the reaction process. This section is to use a simple additive to form a uniform perovskite film and properties controlled by precursor solution that using a spin-coating method which can achieve good coverage. The third part is to improve poor coverage by modifying perovskite film quality while the pristine device performance shows poor efficiency. Pristine perovskite cannot be produced using a one-step spin coating method, therefore we need to find some modified technology to make mixed solution precursor easily to form a uniform film, then successfully fabricate P-type perovskite planar heterojunction solar cell. Finally, by controlling experimental parameter, the efficiency of P-type perovskite planar hetrojunction can be more than 8%. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070152510 http://hdl.handle.net/11536/75875 |
Appears in Collections: | Thesis |