完整後設資料紀錄
DC 欄位語言
dc.contributor.author郭鴻一en_US
dc.contributor.authorKuo, Hung-Yien_US
dc.contributor.author蔡文錦en_US
dc.contributor.authorTsai, Wen-Jiinen_US
dc.date.accessioned2014-12-12T02:44:30Z-
dc.date.available2014-12-12T02:44:30Z-
dc.date.issued2014en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070156634en_US
dc.identifier.urihttp://hdl.handle.net/11536/75945-
dc.description.abstract影像品質評估(Image Quality Assessment, IQA)在許多與數位影像有關之應用上都是相當重要的問題,所以目前已有許多方法被提出,以僅可能正確的估量影像的品質為目的。然而,過往的實驗數據顯示,一個影像品質評估方法可能在某些特定形式的圖像失真(Distortion)上有較佳的表現,卻在其他的失真形式上表現較差。 本論文提出一種直觀的方法來偵測圖像的失真形式,並且依偵測的結果自兩種目前常用的視覺評估方法-考量人類視覺系統之峰值信噪比(PSNR-HVS)和結構相似性指標(SSIM)之中,選用其較適合者。實驗結果表明本方法可確實的結合兩方法之優點,並且相較於兩者在圖像的品質評估上皆有較好的表現。zh_TW
dc.description.abstractImage Quality Assessment is an important issue on many applications about digital image, so there are many methods were proposed to evaluate quality of an image as correctly as possible. However, recent experiment results show that an IQA metric may perform well on some distortion types of images, but bad on other distortion types. In this paper, we propose an intuitive method to detect the distortion type of an image, and use the detection result to choose appropriate metric from two widely used IQA methods : PSNR-HVS & SSIM. Our experimental results show that our method performs better than PSNR-HVS and SSIMen_US
dc.language.isoen_USen_US
dc.subject影像品質評估zh_TW
dc.subject結構相似性指標zh_TW
dc.subject考量人類視覺系統之峰值信噪比zh_TW
dc.subject圖像失真形式偵測zh_TW
dc.subjectImage Quality Assessment (IQA)en_US
dc.subjectStructural Similarity Index (SSIM)en_US
dc.subjectPeak Signal to Noise Ratio-HVS (PSNR-HVS)en_US
dc.subjectImage Distortion Type Detectionen_US
dc.title基於失真形式偵測的影像品質評估方法zh_TW
dc.titleHybrid Image Quality Assessment Method Based On Distortion Type Detectionen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文