Full metadata record
DC FieldValueLanguage
dc.contributor.authorFukuhara, Shinjien_US
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:09:57Z-
dc.date.available2014-12-08T15:09:57Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn0305-0041en_US
dc.identifier.urihttp://dx.doi.org/10.1017/S0305004108001321en_US
dc.identifier.urihttp://hdl.handle.net/11536/7609-
dc.description.abstractLet S(w)+(2) (Gamma(0)(N)) be the vector space of cusp forms of weight w + 2 on the congruence subgroup Gamma(0)(N). We first determine explicit formulas for period polynomials of elements in S(w+2)(Gamma(0)(N)) by means of Bernoulli polynomials. When N = 2, from these explicit formulas we obtain new bases for S(w+2)(Gamma(0)(2)), and extend the Eichler-Shimura-Manin isomorphism theorem to Gamma(0)(2). This implies that there are natural correspondences between the spaces of cusp forms on Gamma(0)(2) and the spaces of period polynomials. Based on these results, we will find explicit form of Hecke operators on S(w+2)(Gamma(0)(2)). As an application of main theorems, we will also give an affirmative answer to a speculation of Imamoglu and Kohnen on a basis of S(w+2)(Gamma(0)(2)).en_US
dc.language.isoen_USen_US
dc.titlePeriod polynomials and explicit formulas for Hecke operators on Gamma(0)(2)en_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0305004108001321en_US
dc.identifier.journalMATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETYen_US
dc.citation.volume146en_US
dc.citation.issueen_US
dc.citation.spage321en_US
dc.citation.epage350en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000264237600006-
dc.citation.woscount8-
Appears in Collections:Articles