完整後設資料紀錄
DC 欄位語言
dc.contributor.author簡佑軒en_US
dc.contributor.authorChien, Yu-Hsuanen_US
dc.contributor.author胡竹生en_US
dc.contributor.authorHu Jwu-Shengen_US
dc.date.accessioned2014-12-12T02:45:35Z-
dc.date.available2014-12-12T02:45:35Z-
dc.date.issued2014en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070160050en_US
dc.identifier.urihttp://hdl.handle.net/11536/76483-
dc.description.abstract本論文針對關鍵字的持續監聽,提出以諧波結構(Harmonic Structure)為特徵的語音活動偵測演算法(Voice Activity Detection, VAD),諧波結構是頻率軸上具有週期性的能量分佈,搜尋頻譜區域性明顯的諧波結構做為語音特徵,並在VAD決策方法上,判斷諧波結構在時間軸上的連續性。本論文演算法以不同種類的非穩態純噪音,以及關鍵字在不同SNR下的情況測試,並針對語音命中率和非語音命中率進行分析,其結果與G.729、長時間訊號變動程度(LTSD)、高斯混合模型(GMM)等文獻方法比較,顯示本論文提出的演算法較具優勢。zh_TW
dc.description.abstractThis thesis proposes a new voice activity detection (VAD) algorithm which is based on harmonic structure feature in keyword listening application. Harmonic structure is a feature that using the periodicity of energy in frequency domain. This approach searches the obvious part of harmonic structure in frequency domain as speech feature, and check the continuity of harmonic structure in time domain as VAD decision rule. The proposed algorithm is tested under different types of non-stationary noises and different SNR condition. Experimental results demonstrate its advantages over other VADs such as G.729, long-term spectral divergence (LTSD) and Gaussian mixture model (GMM).en_US
dc.language.isozh_TWen_US
dc.subject諧波結構zh_TW
dc.subject諧波zh_TW
dc.subject語音活動偵測zh_TW
dc.subjectharmonic structureen_US
dc.subjectharmonicen_US
dc.subjectVoice Activity Detectionen_US
dc.subjectVADen_US
dc.title應用於關鍵字監聽之諧波結構語音活動偵測演算法zh_TW
dc.titleVoice Activity Detection based on Harmonic Structure in Keyword Listening Applicationen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文