Full metadata record
DC FieldValueLanguage
dc.contributor.author陳宏銘en_US
dc.contributor.authorHung-Ming Chenen_US
dc.contributor.author葉芳栢en_US
dc.contributor.author許元春en_US
dc.contributor.authorFang-Bo Yehen_US
dc.contributor.authorYuan-Chung Sheuen_US
dc.date.accessioned2014-12-12T02:45:41Z-
dc.date.available2014-12-12T02:45:41Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009222533en_US
dc.identifier.urihttp://hdl.handle.net/11536/76512-
dc.description.abstract在過去,利率的變化一直被視為一個隨機過程。在本論文中,我們假設利率的隨機變化行為可由一組隨時間變化之定性參數來決定的。這個概念被套用在短期與遠期利率模型上,並分別採用單點和階梯型函數的參數來進行分析。針對利率模型,運用semi-infinite programming方法,來求出模型中的參數值,使模型和真實利率變動的差為最小。計算所得到的模型,除利率曲線外並包含變動的上下界,如此一來,可涵蓋真實利率變動行為。zh_TW
dc.description.abstractAlthough interest rate is a stochastic process, in this thesis we model the random behavior as a perturbation w(t) In every time interval t in [t_{i-1},t_i]. We formulate short-rate model as a deterministic perturbation model which is a solution of a semi-infinite Programming problem. The solution can get upper bound and lower bound value. these curve can bound the yield curve.en_US
dc.language.isoen_USen_US
dc.subject利率zh_TW
dc.subjectSemi-infinite programmingzh_TW
dc.subjectVasicek 模型zh_TW
dc.subject遠期利率zh_TW
dc.subjectInterest rateen_US
dc.subjectSemi-infinite programmingen_US
dc.subjectVasicek modelen_US
dc.subjectForward rateen_US
dc.titleNumerical Analysis On The Vasicek Interest Rate Model by Semi-infinit Programmingzh_TW
dc.titleNumerical Analysis On The Vasicek Interest Rate Model by Semi-infinit Programmingen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis