Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Hsiuyingen_US
dc.contributor.authorTsung, Fugeeen_US
dc.date.accessioned2014-12-08T15:10:03Z-
dc.date.available2014-12-08T15:10:03Z-
dc.date.issued2009-02-01en_US
dc.identifier.issn0040-1706en_US
dc.identifier.urihttp://dx.doi.org/10.1198/TECH.2009.0003en_US
dc.identifier.urihttp://hdl.handle.net/11536/7669-
dc.description.abstractThe construction of tolerance intervals (TIs) for discrete variables, such as binomial and Poisson variables, has been critical in industrial applications in various sectors, including manufacturing and pharmaceuticals. Inaccurate estimation of coverage probabilities leads to improper construction of tolerance intervals and may lead to serious financial losses for the manufacturers. This article proposes procedures to compute the exact minimum and average coverage probabilities of the tolerance intervals for Poisson and binomial variables. These procedures are illustrated with examples and real data applications. Based on these procedures, improved tolerance intervals are proposed that can ensure that the true minimum or average coverage probabilities are very close to the nominal levels.en_US
dc.language.isoen_USen_US
dc.subjectBinomial distributionen_US
dc.subjectPoisson distributionen_US
dc.subjectQuality controlen_US
dc.subjectTolerance intervalen_US
dc.titleTolerance Intervals With Improved Coverage Probabilities for Binomial and Poisson Variablesen_US
dc.typeArticleen_US
dc.identifier.doi10.1198/TECH.2009.0003en_US
dc.identifier.journalTECHNOMETRICSen_US
dc.citation.volume51en_US
dc.citation.issue1en_US
dc.citation.spage25en_US
dc.citation.epage33en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000264429100003-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000264429100003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.