完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiang, Yu-Mingen_US
dc.contributor.authorShih, Sheng-Wenen_US
dc.contributor.authorShih, Arthur Chun-Chiehen_US
dc.contributor.authorLiao, Hong-Yuan Marken_US
dc.contributor.authorLin, Cheng-Chungen_US
dc.date.accessioned2014-12-08T15:10:03Z-
dc.date.available2014-12-08T15:10:03Z-
dc.date.issued2009-02-01en_US
dc.identifier.issn1083-4419en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TSMCB.2008.2005643en_US
dc.identifier.urihttp://hdl.handle.net/11536/7674-
dc.description.abstractVisual analysis of human behavior has generated considerable interest in the field of computer vision because of its wide spectrum of potential applications. Human behavior can be segmented into atomic actions, each of which indicates a basic and complete movement. Learning and recognizing atomic human actions are essential to human behavior analysis. In this paper, we propose a framework for handling this task using variable-length Markov models (VLMMs). The framework is comprised of the following two modules: a posture labeling module and a VLMM atomic action learning and recognition module. First, a posture template selection algorithm, based on a modified shape context matching technique, is developed. The selected posture templates form a codebook that is used to convert input posture sequences into discrete symbol sequences for subsequent processing. Then, the VLMM technique is applied to learn the training symbol sequences of atomic actions. Finally, the constructed VLMMs are transformed into hidden Markov models (HMMs) for recognizing input atomic actions. This approach combines the advantages of the excellent learning function of a VLMM and the fault-tolerant recognition ability of an HMM. Experiments on realistic data demonstrate the efficacy of the proposed system.en_US
dc.language.isoen_USen_US
dc.subjectAtomic action learningen_US
dc.subjectatomic action recognitionen_US
dc.subjecthuman behavior analysisen_US
dc.subjectvariable-length Markov models (VLMMs)en_US
dc.titleLearning Atomic Human Actions Using Variable-Length Markov Modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMCB.2008.2005643en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.citation.volume39en_US
dc.citation.issue1en_US
dc.citation.spage268en_US
dc.citation.epage280en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000262562700023-
dc.citation.woscount13-
顯示於類別:期刊論文


文件中的檔案:

  1. 000262562700023.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。