Full metadata record
DC FieldValueLanguage
dc.contributor.author陳裕仁en_US
dc.contributor.authorYu-Jen Chenen_US
dc.contributor.author林俊源en_US
dc.contributor.authorJiunn-Yuan Linen_US
dc.date.accessioned2014-12-12T02:47:27Z-
dc.date.available2014-12-12T02:47:27Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009227504en_US
dc.identifier.urihttp://hdl.handle.net/11536/76907-
dc.description.abstract銅氧化物超導體的載子,廣泛的被認為是電洞。但是Nagaosa和Lee以spin-charge separation為架構下之Kondo effect作用時,認為當鋅掺入在銅氧化物中,當載子濃度從underdoped到overdoped時,樣品殘餘電阻會從正比於nimp/p,變化到正比於nimp/(1-p)載子會從電洞變成電子,暗示銅氧化物的電子結構將會被改變。而最近的研究中,X.J.Zhou 用角分辨光電子發射能譜(ARPMS)去研究La2-xSrxCuO4 (LSCO)單晶費密面的變化,發現載子濃度大於0.22時,銅氧化物的載子才會變成電洞,這結果與前者有很大的差異。另外,Ando應用電阻率曲率繪圖的方法,繪製出另一類型的銅氧化物相圖,使得更方便去探討一些超導相圗上的傳輸特性,我們也將用同樣的方法去繪製並探討Y0.7Ca0.3Ba2Cu3O7-y的相圗。為了檢驗此重要之論證,我們將研究重點集中於Y0.7Ca0.3Ba2Cu3O7-y和Y0.7Ca0.3Ba2(Cu1-xZnx)3O7-y (x = 0.01、0.03)薄膜之傳輸特性。我們延續先前鍾佩君的實驗,以固定鋅的含量量測殘餘電阻隨著載子濃度從underdoped到overdoped的改變,從原本只到p = 0.11延伸作到p = 0.08,從樣品傳輸特性上的變化,印證銅氧化物的電子結構,傳導載子依然仍是電洞。zh_TW
dc.description.abstractBy the conventional point of view, the prominent carriers in cuprates are holes. However, Nagaosa and Lee claimed that the residual resistivity was in the form of r0µnimp/p in the underdoped regime and r0µnimp/(1-p)in the overdoped regime for Zn-doped cuprates with the Kondo screening effect in the spin-charge separation context. Here nimp is the Zn impurity concentration and p the hole concentration. If this case is true, a novel change of the electronic structure would happen from underdoped to overdoped regime. Recently, X.J. Zhou using angle-resolved photoemission spectroscopy (ARPMS) to observation of a change in Fermi-surface of (La2-xSrx)CuO4 with doping. When x = 0.22, the Fermi-surface will be changed from hole-like to electron-like. It’s different from former result. Otherwise, Ando made resistivity curvature mapping (RCM) to draw other type electric phase diagram of cuprates. It is conveniently to discussion the electronic transport properties of the curpates. We also try to use the same method to investigat and draw the pahse diagram of Y0.7Ca0.3Ba2Cu3O7-y. We focus our study on the electric transport properties of Y0.7Ca0.3Ba2Cu3O7-y & Y0.7Ca0.3Ba2(Cu1-xZn0x) 3O7-y (x = 0.01、0.03)thin films. The key point is to fix the Zn doping level while the carrier concentration in the sample is changed. To continuous P. C. Chung’s experiments, we pushed the hole concentration from 0.21 to 0.08, further. The evolution of the electronic structure with hole doping inferred from the changes of the transport properties is explored.en_US
dc.language.isozh_TWen_US
dc.subject銅氧化物zh_TW
dc.subject控氧zh_TW
dc.subject載子濃度zh_TW
dc.subjectcuprateen_US
dc.subjectannealen_US
dc.subjecthole concentrationen_US
dc.title摻雜電洞在銅氧化物超導體的電子結構之研究zh_TW
dc.titleEvolution of the electronic structure with hole doping in cuprateen_US
dc.typeThesisen_US
dc.contributor.department物理研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 750401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.