Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 王怡珺 | en_US |
dc.contributor.author | Wang, Yi-chun | en_US |
dc.contributor.author | 毛治國 | en_US |
dc.contributor.author | Mao, Chi-kuo | en_US |
dc.date.accessioned | 2014-12-12T02:48:36Z | - |
dc.date.available | 2014-12-12T02:48:36Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009237502 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/77260 | - |
dc.description.abstract | 本研究目的在於將突變理論應用在投票行為分析。透過研究建立出的突變選舉行為架構,用以分析兩千年總統大選中所發生的兩次重大變化—宋楚瑜興票案使原本領先的局勢變成三強鼎立的形勢;另外在經過選舉前不可公開民意調查資料的十天時間內,發生的事件使得棄保效應發生作用。 | zh_TW |
dc.description.abstract | The purpose of this thesis is to present a well-grounded approach for explaining changes observed in the election affording practitioners an analytical method that can capture both nonlinear and multithreshold characteristics. To accomplish this objective, we present catastrophe theory representation of the relationships among two events happening presidential election of the year 2000. In the following sections we discuss, in turn, the conceptual framework construction, the catastrophe theory model, model dynamics under catastrophe theory with an illustrative example, and the strategic implications of this perspective. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 突變理論 | zh_TW |
dc.subject | 總統大選 | zh_TW |
dc.subject | 選舉行為 | zh_TW |
dc.subject | 策略性投票 | zh_TW |
dc.subject | Catastrophe Theory | en_US |
dc.subject | Presidential Election | en_US |
dc.subject | Voting Behavior | en_US |
dc.subject | Strategic Voting | en_US |
dc.title | 以突變理論分析選舉行為—台灣兩千年總統大選 | zh_TW |
dc.title | An Application of Catastrophe Theory to the analysis of Taiwan Presidential Election in year 2000 | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 經營管理研究所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.