Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Szu-Chengen_US
dc.contributor.authorWu, Jing-Nuoen_US
dc.contributor.authorTsai, Ming-Rungen_US
dc.contributor.authorHsieh, Wen-Fengen_US
dc.date.accessioned2014-12-08T15:10:09Z-
dc.date.available2014-12-08T15:10:09Z-
dc.date.issued2009-01-07en_US
dc.identifier.issn0953-8984en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0953-8984/21/1/015503en_US
dc.identifier.urihttp://hdl.handle.net/11536/7753-
dc.description.abstractWe suggest a better mathematical method, fractional calculus, for studying the behavior of the atom-field interaction in photonic crystals. By studying the spontaneous emission of an atom in a photonic crystal with a one-band isotropic model, we found that the long-time inducing memory of the spontaneous emission is a fractional phenomenon. This behavior could be well described by fractional calculus. The results show no steady photon-atom bound state for the atomic resonant transition frequency lying in the proximity of the allowed band edge which was encountered in a previous study (Woldeyohannes and John 2003 J. Opt. B: Quantum Semiclass. Opt.5 R43). The correctness of this result is validated by the 'cut-off smoothing' density of photon states (DOS) with fractional calculus. By obtaining a rigorous solution without the multiple-valued problem for the system, we show that the method of fractional calculus has a logically concise property.en_US
dc.language.isoen_USen_US
dc.titleSpontaneous emission near the band edge of a three-dimensional photonic crystal: a fractional calculus approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0953-8984/21/1/015503en_US
dc.identifier.journalJOURNAL OF PHYSICS-CONDENSED MATTERen_US
dc.citation.volume21en_US
dc.citation.issue1en_US
dc.citation.epageen_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000261517500024-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000261517500024.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.