完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃銘嘉en_US
dc.contributor.authorMing-Chia Huangen_US
dc.contributor.author陳安斌en_US
dc.contributor.authorAn-Pin Chenen_US
dc.date.accessioned2014-12-12T02:49:58Z-
dc.date.available2014-12-12T02:49:58Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009264505en_US
dc.identifier.urihttp://hdl.handle.net/11536/77626-
dc.description.abstract人工智慧方法學近年來在各種領域被廣泛採用,因人工智慧模型擁有彈性不需任何假設與限制,符合現實環境搜尋解答情況。在財務金融相關領域,已有多樣化的應用。本研究應用人工智慧方法的基因演算法與分類元系統於動態投資組合保險的研究,以基因演算法找出時間不變性投資組合保險策略中最適化的槓桿乘數與最低調整門檻值,並運用分類元系統採用移動平均線、隨機指標、平滑異同移動平均線等技術指標為輸入因子,預測台灣股市漲跌趨勢及買訊或賣訊,對時間不變性投資組合保險策略的槓桿乘數與最低調整門檻值進行動態調整。 本研究模型設計共兩種,模型一為多重分類元與時間不變性投資組合保險策略結合Multi-Agent XCS TIPP,模型二為分類元與時間不變性投資組合保險策略結合模型XCS-TIPP。實證研究資料選取區間為從一九九一年至二零零五年間台灣加權指數日資料,以一九九一年至一九九五年為訓練期,一九九六年至二零零五年為驗證期,分為一、三、五年的三種保本期間,再以保本比率百分之七十、八十、九十分別進行驗證,最後並與基因演算法結合時間不變性投資組合保險策略模型比較,當保本比率七十時XCS-TIPP優於Multi-Agent XCS TIPP與基因演算法,當保本比率八十與九十時Multi-Agent XCS TIPP優於XCS-TIPP與基因演算法,而保本期間愈長其獲利效果愈佳。 本研究結果顯示Multi-Agent XCS TIPP與XCS-TIPP兩種模型,確實能有效且動態調整時間不變性投資組合保險策略的槓桿乘數與最低調整門檻值,以擴大保本期間的獲利可能,適合做為基金經理人或大型資產管理者之決策輔助工具,並適用於長期的投資保本操作,可大幅降低市場波動影響,在保本期間內穩定獲利。zh_TW
dc.description.abstractThe purpose of this thesis is intended to investigate an new approach which hybrids Genetic Algorithm(GA)and eXtended Classifier System(XCS)to provide better strategies for Time Invariance Portfolio Protection(TIPP) policy. Two models: XCS-TIPP and Multi-Agent XCS TIPP(MAXCS-TIPP)are proposed to optimize multiple and tolerance variables which are concerned as the important parameters of TIPP. Then the optimized parameters and stock technology indexes Moving Average(MA), Moving Average Convergence and Divergence(MACD), KD, Relation Strength Index(RSI), and Volume are used as the classifier system's input factors to predict TAIEX trend and generate buy/sell signals. The two models are experimented using different insurance ratios and periods of TAIEX from 1991/1/3~2005/1/3. The experimental results revealed XCS-TIPP and MAXCS-TIPP gain superior premium than that from traditional TIPP policy. In this study XCS-based model proposed for dynamic portfolio insurance is proved which can dynamically find out the most adequate value of multiple and tolerance two parameters. Their performance is also showen outperformed from the TAIEX market and the traditional portfolio insurance approach.en_US
dc.language.isozh_TWen_US
dc.subject多重分類元系統zh_TW
dc.subject分類元系統zh_TW
dc.subject基因演算法zh_TW
dc.subject時間不變性投資組合保險策略zh_TW
dc.subjectGenetic Algorithmen_US
dc.subjectExtended Classifier Systemen_US
dc.subjectTime Invariance Portfolioen_US
dc.title應用多重分類元系統於動態投資組合保險策略之研究zh_TW
dc.titleApplication of multiple extended classifier systems to dynamic portfolio insurance policyen_US
dc.typeThesisen_US
dc.contributor.department管理學院資訊管理學程zh_TW
顯示於類別:畢業論文