完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 黃泰勳 | en_US |
dc.contributor.author | Tai-Hsun Huang | en_US |
dc.contributor.author | 尹慶中 | en_US |
dc.contributor.author | 周長彬 | en_US |
dc.contributor.author | Ching-Chung Yin | en_US |
dc.contributor.author | Chang-Pin Chou | en_US |
dc.date.accessioned | 2014-12-12T02:50:42Z | - |
dc.date.available | 2014-12-12T02:50:42Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009269507 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/77811 | - |
dc.description.abstract | 本研究主要探討低碳鋼與不□鋼,異種材料TIG-Flux接合製程之參數最佳化。實驗材料選用SAE1020低碳鋼及AISI304沃斯田鐵型不□鋼,活性助銲劑選用氧化物粉末二氧化鈦(TiO2)及二氧化矽(SiO2)混合調配,銲接方法採用不加填料金屬的鎢極惰性氣體銲(TIG,Tungsten Inert Gas),來進行低碳鋼與不□鋼的對接實驗。本研究以銲道之深寬比(Depth / Width Ratio)作為此製程之品質特性,利用田口方法的實驗配置,有效率地找出包含鎢電極頂角尺寸、銲接電流、銲槍走速及Flux粉末調配比例等參數間的最適條件。 經田口方法實驗求得,當電極頂角為60°,銲接電流180Amp.,銲槍走速150㎜/min,且Flux粉末含20%之二氧化鈦及80%之二氧化矽時,為SAE1020低碳鋼與AISI304沃斯田鐵型不□鋼之TIG-Flux接合之最適參數。藉由變異數分析(ANOVA ,Analysis of Variance)發現四個控制因子中對銲道深寬比影響的重要性依序為Flux粉末(30.24%)、銲槍走速(24.71%)、銲接電流(18.27%);電極頂角尺寸則對此製程的影響極小。 | zh_TW |
dc.description.abstract | The purpose of this study is to explore and discuss the optimization of TIG-Flux welding process parameter for joining of low-carbon steel SAE1020 and stainless steel AISI304. The mixed oxide powder of titanium dioxide (TiO2) and silicon dioxide (SiO2) was used as maximum efficiency flux during tungsten inert gas (TIG) welding process. In this study, the depth/width ratio of weld pool geometry is selected to be the quality characteristics. Taguchi methods is used to determine the optimal conditions of those factors effectively, such as the angle of tungsten electrode tip, welding current, travel speed of the welding torch and blending proportion of flux powder. From the results of Taguchi Methods experiment, the optimal welding parameters for joining of the SAE1020 carbon steel and the AISI304 austenitic stainless steel are (1) tungsten electrode tip angle of 60 degree; (2) welding current of 180Amp; (3) welding torch travel speed of 150 mm/min; and (4) mixed powder combination of 20% titanium dioxide and 80% silicon dioxide. Besides, from the results of analysis of variance (ANOVA), the orders of the importance on the depth/width ratio of weld pool geometry within the four control factors are (1) combination of mixed powder; (2) travel speed of welding torch; (3) welding current; and (4) angle of electrode tip. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 氬銲 | zh_TW |
dc.subject | 助銲劑 | zh_TW |
dc.subject | 田口方法 | zh_TW |
dc.subject | 變異數分析 | zh_TW |
dc.subject | GTAW | en_US |
dc.subject | TIG-Flux | en_US |
dc.subject | Taguchi Methods | en_US |
dc.subject | ANOVA | en_US |
dc.title | 低碳鋼與不□鋼異種材料TIG-Flux接合製程參數最佳化之研究 | zh_TW |
dc.title | Optimization of TIG-Flux Welding Process Parameters for Joining of Carbon Steel and Stainless Steel | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 工學院精密與自動化工程學程 | zh_TW |
顯示於類別: | 畢業論文 |