完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Jian-Daen_US
dc.contributor.authorWang, Yu-Hsuanen_US
dc.contributor.authorChiang, Peng-Hsinen_US
dc.contributor.authorBai, Mingsian R.en_US
dc.date.accessioned2014-12-08T15:10:15Z-
dc.date.available2014-12-08T15:10:15Z-
dc.date.issued2009-01-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2007.09.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/7821-
dc.description.abstractAn expert system for scooter fault diagnosis using sound emission signals based on adaptive order tracking and neural networks is presented in this paper. The order tracking technique is one of the important approaches for fault diagnosis in rotating machinery. The different faults present different order. figures and they can be used to determine the fault in mechanical systems. However, many breakdowns are hard to classify correctly by human experience in fault diagnosis. In the present study, the order tracking problem is treated as a parametric identification and the artificial neural network technique for classifying faults. First, the adaptive order tracking extract the order features as input for neural network in the proposed system. The neural networks are used to develop the training module and testing module. The artificial neural network techniques using a back-propagation network and a radial basis function network are proposed to develop the artificial neural network for fault diagnosis system. The performance of two techniques are evaluated and compared through experimental investigation. The experimental results indicated that the proposed system is effective for fault diagnosis under various engine conditions. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFault diagnosisen_US
dc.subjectAdaptive order trackingen_US
dc.subjectNeural networken_US
dc.subjectBack-propagationen_US
dc.subjectRadial basis function networken_US
dc.titleA study of fault diagnosis in a scooter using adaptive order tracking technique and neural networken_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2007.09.015en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume36en_US
dc.citation.issue1en_US
dc.citation.spage49en_US
dc.citation.epage56en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000264182800005-
dc.citation.woscount11-
顯示於類別:期刊論文


文件中的檔案:

  1. 000264182800005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。