Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Chun-Yuehen_US
dc.contributor.authorChu, Eric King-Wahen_US
dc.contributor.authorGuo, Chun-Huaen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorXu, Shu-Fangen_US
dc.date.accessioned2014-12-08T15:10:16Z-
dc.date.available2014-12-08T15:10:16Z-
dc.date.issued2009en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/11536/7834-
dc.identifier.urihttp://dx.doi.org/10.1137/080717304en_US
dc.description.abstractIn this paper, we review two types of doubling algorithm and some techniques for analyzing them. We then use the techniques to study the doubling algorithm for three different nonlinear matrix equations in the critical case. We show that the convergence of the doubling algorithm is at least linear with rate 1/2. As compared to earlier work on this topic, the results we present here are more general, and the analysis here is much simpler.en_US
dc.language.isoen_USen_US
dc.subjectnonlinear matrix equationen_US
dc.subjectminimal nonnegative solutionen_US
dc.subjectmaximal positive definite solutionen_US
dc.subjectcritical caseen_US
dc.subjectdoubling algorithmen_US
dc.subjectcyclic reductionen_US
dc.subjectconvergence rateen_US
dc.titleCONVERGENCE ANALYSIS OF THE DOUBLING ALGORITHM FOR SEVERAL NONLINEAR MATRIX EQUATIONS IN THE CRITICAL CASEen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/080717304en_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume31en_US
dc.citation.issue2en_US
dc.citation.spage227en_US
dc.citation.epage247en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000267745500002-
dc.citation.woscount24-
Appears in Collections:Articles


Files in This Item:

  1. 000267745500002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.