完整後設資料紀錄
DC 欄位語言
dc.contributor.author蘇傳堯en_US
dc.contributor.authorChuan-Yao Suen_US
dc.contributor.author梁婷en_US
dc.contributor.authorTyne Liangen_US
dc.date.accessioned2014-12-12T02:56:53Z-
dc.date.available2014-12-12T02:56:53Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009323597en_US
dc.identifier.urihttp://hdl.handle.net/11536/79128-
dc.description.abstract專名翻譯的研究可以幫助解決許多自然語言領域的問題,如自動問答系統、機器翻譯、以及跨語言資訊擷取。以往研究著重在利用平衡語料庫或字典來完成,而隨著網路資源的普及,利用網路資源的研究也越來越多。本論文提出了一套整合性的方法,利用網頁資源當作語料庫來完成中英專名翻譯,其中包括搜尋詞擴展和利用事先蒐集好的表面樣式來幫助擷取翻譯候選詞。最後再用我們提出的公式排序翻譯候選詞並得到最後的翻譯結果。在實驗中,我們測試了1376筆專有名詞,在英翻中部分,當名次第一的翻譯候選詞即是正確翻譯的機率可達到87%。在中翻英的部份,當名次第一的翻譯候選詞即是正確翻譯的機率可達到83%。zh_TW
dc.description.abstractProper noun translation plays significant role in many natural language applications, such as question answering, machine translation, cross-language information retrieval. Traditional researches of bilingual term extraction focus on utilizing parallel/comparable texts or general dictionaries. Today the Web becomes the largest resource and is utilized in recent researches. This thesis proposes an integrated extraction method to employ query expansion, surface-patterns mined from web corpus, and new ranking scheme to improve bilingual term extraction. Experimental results on 1376 proper nouns show that the presented extraction can achieve 87% accuracy for English-to-Chinese extraction, and 83% for Chinese-to- English extraction.en_US
dc.language.isoen_USen_US
dc.subject專名zh_TW
dc.subject未知詞zh_TW
dc.subject網路探勘zh_TW
dc.subject搜尋詞擴展zh_TW
dc.subjectproper nounen_US
dc.subjectOOV termsen_US
dc.subjectWeb miningen_US
dc.subjectquery expansionen_US
dc.title利用網路探勘之中英專名萃取研究zh_TW
dc.titleBILINGUAL PROPER NOUNS EXTRACTION THROUGH WEB MININGen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 359701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。