Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 陳詩瀅 | en_US |
dc.contributor.author | Shih Ying Chen | en_US |
dc.contributor.author | 劉敦仁 | en_US |
dc.contributor.author | Dr. Duen-Ren Liu | en_US |
dc.date.accessioned | 2014-12-12T02:58:40Z | - |
dc.date.available | 2014-12-12T02:58:40Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009334507 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/79530 | - |
dc.description.abstract | 顧客關係管理,長久以來被大多企業視為相當重要的管理理念,而其在行銷領域中尤其重要。現今企業有著共同的使命:實現成功且長期之顧客關係管理;又多數的企業認為:瞭解且能夠認知消費者的行為為達到此一共識之第一步驟,因此掌握顧客消費行為實為不可缺少的一環。過去,在顧客關係管理方面之研究有著相當多的方法來評估現今顧客對於企業之價值,包括運用人口統計學以及RFM等。不過,卻鮮少有研究將顧客價值以整合性之觀點做分析探討。 本研究整合統計顧客過去之購買行為、WRFM模式以及分析顧客對於企業之潛在價值提出了LTV模式,以能夠更精準的掌握顧客關係管理。另外,本研究亦利用LTV值之結果將原有之顧客做分群並且預測未來各族群顧客對於企業的貢獻度。同時,也提供了管理者在執行目標顧客群的行銷決策上,有著更敏銳之洞察力。 | zh_TW |
dc.description.abstract | In this paper, we proposed an LTV model that integrates past customers’ buying behavior with demographic variables, WRFM method, and potential value. We also performed market segmentation based on the results of the LTV values. The entirety of the proposed approach will provide a dominant influence in predicting clients’ future level contributions, and give managers a deeper insight when developing marketing strategies for targeted customers | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 顧客價值 | zh_TW |
dc.subject | 客戶分群 | zh_TW |
dc.subject | 市場區隔 | zh_TW |
dc.subject | 資料探勘 | zh_TW |
dc.subject | Lifetime Value | en_US |
dc.subject | Clustering, | en_US |
dc.subject | Market Segmentation | en_US |
dc.subject | Data mining | en_US |
dc.title | 整合顧客價值之客戶終身價值(LTV)模式: 零售市場之應用 | zh_TW |
dc.title | An LTV Model based on Integrated Aspects of Customer’s Value: | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.