完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳惠琪en_US
dc.contributor.author劉敦仁en_US
dc.contributor.author林妙聰en_US
dc.contributor.authorDr. Duen-Ren Liuen_US
dc.contributor.authorDr. B.M.T. Linen_US
dc.date.accessioned2014-12-12T03:00:39Z-
dc.date.available2014-12-12T03:00:39Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009364518en_US
dc.identifier.urihttp://hdl.handle.net/11536/80004-
dc.description.abstract資料探勘中的分類是知識管理中最基本也是必備的一環,唯有加以分類編碼才可能將知識成為資料庫並加速知識的擴散。螞蟻演算法是在1991年由Colorni等學者提出,為一新近發展的求近似解演算法。螞蟻演算法原本多運用於求解組合最佳化問題,例如旅行銷售員問題(traveling salesman problem)、二次分派問題(quadratic assignment problem)等。近幾年來,許多研究者發現螞蟻演算法對於資料探勘(data mining)方面亦有不錯的表現。因此,本論文即希望探討如何藉由螞蟻演算法的分類技術,以提升知識管理者的處理效率及一致性。 本研究的分類法著重於名詞性的分類而非數值型態之分類,運用常用的分類法與最近新興的螞蟻分類技術(Ant-Miner)來進行比較。本研究所使用進行比較的軟體工具共有兩套:其中一套為Weka的軟體,係是由Java所寫成,為根據各式的機器學習(machine learning)演算法所寫出來的資料探勘軟體;另一套Ant-Miner係由Rrfael等學者在2002年,將原本運用在各最佳化解題的螞蟻系統,運用在資料探勘方面所發展成的。 之前的針對螞蟻的相關分類技術文件,僅針對常用來做測試的UCI Machine Learning Repository的資料來進行分類。本研究中除了測試UCI的資料外,亦將實際於2005年經由問卷調查所搜集的資料,輸入至Ant-Miner中測試其效果,並將其結果與貝氏分類法及決策樹分類法進行比較。研究結果發現不管那一種分類法,其訓練資料量的大小所建立之分類模式會造成正確率的不同,而分類正確率與執行效率也會有一定的對比關係,此項比較與分析將可做為實務上採行之參考。zh_TW
dc.description.abstractAnt Colony Optimization (ACO) was proposed by Colorni et al in 1991 from the collaborative behavior of ant colonies. It has been applied to such combinatorial optimization problems as traveling salesman problem, quadratic assignment problem, just to name a few. In the recent years, the ACO approach was deployed in the area of data mining, where algorithmic and statistical techniques are used to discover or extract useful information as well as knowledge from large volume of data. This thesis aims to study the efficiency and effectiveness of Ant-Miner, a well-known classifier that is developed using ACO. The major function of Ant-Miner is to extract classification rules out of the examined data sets. The terms or conditions of a rule will be added or removed by ant colony through collaboration or pheromone sharing. The focus of this research is set on the performance comparison between Ant-Miner and Weka, which is a data mining tool incorporating machine learning mechanisms. In this research, we have two data sets with nominal attributes. The first set is selected from the UCI Machine Learning Repository, and the second is a real data set collected in 2005 by a local research institute. We use the two data sets to compare Naivebayes and Decision Tree with Ant-Miner. Experimental results and analysis show that different classification tools demonstrate different levels of efficiency and effectiveness. We also examine the performance of Ant-Miner resulted from different parameter settings, including such as colony size, evaporation rate and diversification level.en_US
dc.language.isozh_TWen_US
dc.subject資料探勘zh_TW
dc.subject知識分類zh_TW
dc.subject螞蟻演算法zh_TW
dc.subject貝氏分類zh_TW
dc.subject決策樹zh_TW
dc.subjectData Miningen_US
dc.subjectKnowledge Managementen_US
dc.subjectACOen_US
dc.subjectNaiveBayesen_US
dc.subjectDecision Treeen_US
dc.title螞蟻分類技術之研究zh_TW
dc.titleA Study of the Ant Colony System for the Discovery of Classification Rulesen_US
dc.typeThesisen_US
dc.contributor.department管理學院資訊管理學程zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 451801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。