標題: Functional Nanoparticle-Based Proteomic Strategies for Characterization of Pathogenic Bacteria
作者: Chen, Wei-Jen
Tsai, Pei-Jane
Chen, Yu-Chie
應用化學系
Department of Applied Chemistry
公開日期: 15-十二月-2008
摘要: Although matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) can be employed to rapidly characterize pathogenic bacteria, bacterial cultures are generally required to obtain sufficient quantities of the bacterial cells prior to MALDI MS analysis. If this time-consuming step could be eliminated, the length of time required for identification of bacterial strains would be greatly reduced. In this paper, we propose an effective means of rapidly identifying bacteria-one that does not require bacterial culturing-using functional nanoparticle-based proteomic strategies that are characterized by extremely short analysis time. In this approach, we used titania-coated magnetic iron oxide nanoparticles (Fe(3)O(4)@TiO(2) NPs) as affinity probes to concentrate the target bacteria. The magnetic properties of the Fe(3)O(4)@TiO(2) NPs allow the conjugated target species to be rapidly isolated from the sample solutions under a magnetic field. Taking advantage of the absorption of the magnetic Fe(3)O(4) NPs in the microwave region of the electromagnetic spectrum, we performed the tryptic digestion of the captured bacteria under microwave heating for only 1-1.5 min prior to MALDI MS analysis. We identified the resulting biomarker ions by combining their MS/MS analysis results with protein database searches. Using this technique, we identified potential biomarker ions representing five Gram-negative bacteria: Escherichia coli O157:H7, uropathogenic E. coli, Shigella sonnei, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Finally, we demonstrated the practical feasibility of using this approach to rapidly characterize bacteria in clinical samples.
URI: http://dx.doi.org/10.1021/ac802042x
http://hdl.handle.net/11536/8027
ISSN: 0003-2700
DOI: 10.1021/ac802042x
期刊: ANALYTICAL CHEMISTRY
Volume: 80
Issue: 24
起始頁: 9612
結束頁: 9621
顯示於類別:期刊論文


文件中的檔案:

  1. 000261728900030.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。