標題: | 基於無線感測網路之多人姿態辨識系統 Multi-Person Pose Estimation Using a Zigbee Sensor Network |
作者: | 陳俊瑋 Chun-Wei Chen 宋開泰 Kai-Tai Song 電控工程研究所 |
關鍵字: | 無線感測網路;多人;姿態辨識;加速度;即時;Zigbee;network;pose;human;accelerometer;wavelet;multi-person;real-time |
公開日期: | 2006 |
摘要: | 本論文以Zigbee無線感測網路發展了一套多人姿態辨識系統。此系統包括人體姿態估測模組、Zigbee無線網路發展板(CC2420DBK board)及電腦端的多人姿態監測軟體。其中人體姿態估測模組由一個三軸加速度計、一個Zigbee晶片及一個8-bit的微控器所組成。人體姿態估測模組可與CC2420DBK board構成Zigbee無線網路,達到同時觀察多人姿態的效果。CC2420DBK board為Zigbee無線感測網路的接收端,透過RS-232介面將Zigbee無線感測網路中接收到的資訊與機器人溝通。多人姿態監測軟體則可以同時檢視三位使用者的姿態,並對各個使用者的姿態作記錄與統計。本文並提出一套結合時域分析與小波轉換的人體姿態估測演算法,實現在人體姿態估測模組的微控器中。透過此演算法分析三軸的加速度訊號,可辨識跌倒、站、坐、躺、上樓、下樓與走路七種人體姿態。本系統經由五位受測者測試,得到辨識率達88%。 In this thesis, a multi-person pose recognition system has been developed. This system includes a human pose detection module, a CC2420DBK board and a multi-person pose monitoring software module. The human pose detection module consists of a triaxial accelerometer, a Zigbee chip and an 8-bit microcontroller. Several human pose detection modules and the CC2420DBK board form a Zigbee wireless network. The CC2420DBK board works as the receiver of the Zigbee wireless sensor network and communicates with the robot onboard computer through RS-232 link. The multi-person pose monitoring software monitors and records activities of multiple users simultaneously. We propose a pose classification algorithm by combining time-domain analysis and wavelet transform analysis. This algorithm has been implemented in the microcontroller of the human pose estimation module. Through the algorithm, the system can classify seven human poses: falling, standing, sitting, lying, walking, going upstairs and going downstairs. A pose recognition rate of 88% has been demonstrated after testing the system by five different users. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009412618 http://hdl.handle.net/11536/80749 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.