完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 陳宏宇 | en_US |
dc.contributor.author | 陳信宏 | en_US |
dc.date.accessioned | 2014-12-12T03:03:55Z | - |
dc.date.available | 2014-12-12T03:03:55Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009413538 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/80801 | - |
dc.description.abstract | 在本論文中,基本辨識系統上,對單一音節的辨認運用前後音節的特徵參數,並對於音高輪廓及能量區段化的方式,利用MLP辨認器進行聲調辨認,實驗於單一語者及非特定語者語料庫,辨認率分別為87.74%及83.27%;擴展特徵參數抽取方式至tone pair上,同樣利用MLP辨認器,加上利用Viterbi search對於MLP辨認器進行修正,辨認率分別為88.15%及85.81%;此外,利用音節的基頻軌跡、音節間的pause duration及energy-deep level,訓練聲調模型、韻律模型、音節間的break type模型,利用Viterbi search做聲調辨認,對於單一語者語料庫,最高可得到辨識為71.89%。 | zh_TW |
dc.description.abstract | In this thesis, the features of the preceding and the succeeding syllable are used to help tone recognition on MLP (multi-layer perceptron) tone recognizer. The features include means and slopes of three uniformly divided-pitch contour, duration of the syllable and energy. Recognition rate are 87.74% and 83.27% for single speaker and multi-speaker database. If using the features of tone pair on MLP tone recognizer, the recognition rate are 88.15% and 85.81% respectively. Furthermore, using the features of pitch contour, pause duration and energy-dip level construct prosody model, tone model and break type model. Then we use Viterbi search algorithm to recognize. A recognition rate of 71.89% is achieved. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 基頻軌跡 | zh_TW |
dc.subject | 聲調辨認 | zh_TW |
dc.subject | 韻律模型 | zh_TW |
dc.subject | pitch contour | en_US |
dc.subject | MLP (multi-layer perceptrons) | en_US |
dc.subject | prosody model | en_US |
dc.title | 使用MLP與韻律模型之聲調辨認 | zh_TW |
dc.title | Tone Recognition Using MLP and Prosody Model | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |