完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳宏宇en_US
dc.contributor.author陳信宏en_US
dc.date.accessioned2014-12-12T03:03:55Z-
dc.date.available2014-12-12T03:03:55Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009413538en_US
dc.identifier.urihttp://hdl.handle.net/11536/80801-
dc.description.abstract在本論文中,基本辨識系統上,對單一音節的辨認運用前後音節的特徵參數,並對於音高輪廓及能量區段化的方式,利用MLP辨認器進行聲調辨認,實驗於單一語者及非特定語者語料庫,辨認率分別為87.74%及83.27%;擴展特徵參數抽取方式至tone pair上,同樣利用MLP辨認器,加上利用Viterbi search對於MLP辨認器進行修正,辨認率分別為88.15%及85.81%;此外,利用音節的基頻軌跡、音節間的pause duration及energy-deep level,訓練聲調模型、韻律模型、音節間的break type模型,利用Viterbi search做聲調辨認,對於單一語者語料庫,最高可得到辨識為71.89%。zh_TW
dc.description.abstractIn this thesis, the features of the preceding and the succeeding syllable are used to help tone recognition on MLP (multi-layer perceptron) tone recognizer. The features include means and slopes of three uniformly divided-pitch contour, duration of the syllable and energy. Recognition rate are 87.74% and 83.27% for single speaker and multi-speaker database. If using the features of tone pair on MLP tone recognizer, the recognition rate are 88.15% and 85.81% respectively. Furthermore, using the features of pitch contour, pause duration and energy-dip level construct prosody model, tone model and break type model. Then we use Viterbi search algorithm to recognize. A recognition rate of 71.89% is achieved.en_US
dc.language.isozh_TWen_US
dc.subject基頻軌跡zh_TW
dc.subject聲調辨認zh_TW
dc.subject韻律模型zh_TW
dc.subjectpitch contouren_US
dc.subjectMLP (multi-layer perceptrons)en_US
dc.subjectprosody modelen_US
dc.title使用MLP與韻律模型之聲調辨認zh_TW
dc.titleTone Recognition Using MLP and Prosody Modelen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 353801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。