Full metadata record
DC FieldValueLanguage
dc.contributor.author鄧存智en_US
dc.contributor.authorCun-Zhi Dengen_US
dc.contributor.author陳信宏en_US
dc.contributor.authorSin-Horng Chenen_US
dc.date.accessioned2014-12-12T03:04:17Z-
dc.date.available2014-12-12T03:04:17Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009413622en_US
dc.identifier.urihttp://hdl.handle.net/11536/80883-
dc.description.abstract在本論文中,我們將Isolated word辨識與Keyword spotting分別實現於嵌入式平台環境。在Isolated word辨識中,系統目標為建立辨識詞庫一千詞彙的Embedded Automatic Speech Recognition (eASR)系統。在辨識速度上小於兩倍語音輸入時間,以及辨識率在乾淨環境中超過95%,而在車環境下超過90%,為了加速辨識以及使用上的便利性,我們加入語音偵測技術,然而在嵌入式系統中,為了解決電容式麥克風在充電時輸出的不可靠,我們並非以開始為語音訂定臨界值(threshold),而是採用適應性臨界值。在Keyword spotting中,我們使用與關鍵詞聲學模型一樣的填充模型,並考慮以關鍵詞長挑選最佳路徑,其辨識率在乾淨環境中超過90%。zh_TW
dc.description.abstractIn this thesis, an embedded isolated Mandarin word recognition system and keyword spotting were implemented in a Windows-CE based mobile device. The speech recognition system used a HMM recognizer using partition Lapalacian observation probability. The system was carefully tuning in order to get the near real-time response without performance degeneration. Finally, the isolated Mandarin word recognition system, the system response time is about 1.2 times real time and 95.8% word recognition rate can be achieved for a 1000 words application, in the other hand, keyword spotting response time is 1.8 real time and 91.6% recognition rate for a 776 words.en_US
dc.language.isozh_TWen_US
dc.subject語音偵測zh_TW
dc.subject語音辨識zh_TW
dc.subjectVADen_US
dc.subjectspeech recognitionen_US
dc.title嵌入式語音偵測與關鍵詞辨識系統zh_TW
dc.titleVoice Activity Detection and Keyword Spotting System on Embedded Platformen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis