完整後設資料紀錄
DC 欄位語言
dc.contributor.author張威凱en_US
dc.contributor.authorChang, Wei-Kaien_US
dc.contributor.author秦繼華en_US
dc.contributor.authorChin, Jih-Huaen_US
dc.date.accessioned2014-12-12T03:04:37Z-
dc.date.available2014-12-12T03:04:37Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009414538en_US
dc.identifier.urihttp://hdl.handle.net/11536/80938-
dc.description.abstract本論文以失效分析(FMEA)推斷安全閥容易發生失效的零件,並應用類神經網路(Neural Network)的實驗數據模型的模擬預測能力,建立彈簧安全閥的壽命預測,以期能用低於傳統可靠度實驗數據的資料量亦能求得準確的結果,即為在不失去準確性的情況下,縮短可靠度實驗數據資料建立時間的方法,以期能使可靠度分析更容易普及於工程的各個環節中,以提升工程的品質,良率,安全性。zh_TW
dc.description.abstractThis paper is use the FMEA to analyze the Safety Valves' failure effects to determine which components are easier to fail. And use Neural Network's data model prediction ability to establish Safety Valves' MTTF. Except the method to earn the accurate result without so much testing like traditional Reliability prediction. That is the way to shorten the time of establish of Reliability Testing database without lose precision, then we can make Reliability Analysis more universal and widely use in every part of engineering and upgrade the quality, yield rate and safety.en_US
dc.language.isozh_TWen_US
dc.subject可靠度zh_TW
dc.subject類神經網路zh_TW
dc.subject失效分析zh_TW
dc.subjectReliabilityen_US
dc.subjectNeural Networken_US
dc.subjectFMEAen_US
dc.title應用類神經網路預測安全閥彈簧之可靠度zh_TW
dc.titlePrediction of the Reliability for Springs in Safety Valves using Neural Networken_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
顯示於類別:畢業論文