完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, SMen_US
dc.contributor.authorPearn, WLen_US
dc.date.accessioned2014-12-08T15:02:06Z-
dc.date.available2014-12-08T15:02:06Z-
dc.date.issued1997en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/11536/811-
dc.description.abstractBissell (1990) proposed an estimator <(C)over cap (pk)> for the process capability index C-pk assuming that P(mu greater than or equal to m) = 0, or 1, where mu is the process mean, and m is the midpoint between the upper and lower specification limits. Pearn and Chen (1996) considered a new estimator <(C)over tilde (pk)>, which relaxes Bissell's assumption on the process mean. The evaluation of <(C)over tilde (pk)> only requires the knowledge of P(mu greater than or equal to m) = p, where 0 less than or equal to p less than or equal to 1. The new estimator <(C)over bar (pk)> is unbiased, and the variance is smaller than that of Bissell's. In this paper, we investigated the asymptotic properties of the estimator <(C)over tilde (pk)> under general conditions. We derived the limiting distribution of <(C)over tilde (pk)> for arbitrary population assuming the fourth moment exists. The asymptotic distribution provides some insight into the properties of <(C)over tilde (pk)> which may not be evident from its original definition.en_US
dc.language.isoen_USen_US
dc.subjectprocess capability indexen_US
dc.subjectasymptotic distributionen_US
dc.subjectprocess meanen_US
dc.subjectprocess standard deviationen_US
dc.titleThe asymptotic distribution of the estimated process capability index (C)over-tilde(pk)en_US
dc.typeArticleen_US
dc.identifier.journalCOMMUNICATIONS IN STATISTICS-THEORY AND METHODSen_US
dc.citation.volume26en_US
dc.citation.issue10en_US
dc.citation.spage2489en_US
dc.citation.epage2497en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:A1997YB16300014-
dc.citation.woscount4-
顯示於類別:期刊論文


文件中的檔案:

  1. A1997YB16300014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。