Full metadata record
DC FieldValueLanguage
dc.contributor.authorChao, Wen-Hungen_US
dc.contributor.authorChen, You-Yinen_US
dc.contributor.authorCho, Chien-Wenen_US
dc.contributor.authorLin, Sheng-Huangen_US
dc.contributor.authorShih, Yen-Yu I.en_US
dc.contributor.authorTsang, Sinyen_US
dc.date.accessioned2014-12-08T15:10:38Z-
dc.date.available2014-12-08T15:10:38Z-
dc.date.issued2008-11-15en_US
dc.identifier.issn0165-0270en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jneumeth.2008.08.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/8142-
dc.description.abstractThe purpose of this study was to improve the accuracy rate of brain tissue classification in magnetic resonance (MR) imaging using a boosted decision tree segmentation algorithm. Herein. we examined simulated phantom MR (SPMR) images, simulated brain MR (SBMR) images, and a real data. The accuracy rate and k index when classifying brain tissues as gray matter (GM), white matter (WM), or cerebral-spinal fluid (CSF) were better when using the boosted decision tree algorithm combined with a fuzzy threshold than when using a statistical region-growing (SRG) algorithm [Wolf 1, Vetter M, Wegner 1, Bottger T, Nolden M, Schobinger M, et al. The medical imaging interaction toolkit. Med Imag Anal 2005;9:594-604] and an adaptive segmentation (AS) algorithm [Wells WM, Crimson WEL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imag 1996; 15:429-42]. The segmentation performance when using this algorithm on real data from brain MR images was also better than those of SRG and AS algorithm. Segmentation of a real data using the boosted decision tree produced particularly clear brain MR imaging and permitted more accurate brain tissue segmentation. In conclusion, a decision tree with appropriate boost trials successfully improved the accuracy rate of MR brain tissue segmentation. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMRIen_US
dc.subjectImage segmentationen_US
dc.subjectBoosted decision treeen_US
dc.subjectBrain tissue classificationen_US
dc.subjectAccuracy rateen_US
dc.subjectk indexen_US
dc.titleImproving segmentation accuracy for magnetic resonance imaging using a boosted decision treeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jneumeth.2008.08.017en_US
dc.identifier.journalJOURNAL OF NEUROSCIENCE METHODSen_US
dc.citation.volume175en_US
dc.citation.issue2en_US
dc.citation.spage206en_US
dc.citation.epage217en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000261076700004-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000261076700004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.