Full metadata record
DC FieldValueLanguage
dc.contributor.author施富騰en_US
dc.contributor.authorFu-Teng Shien_US
dc.contributor.author巫木誠en_US
dc.contributor.authorMuh-Cherng Wuen_US
dc.date.accessioned2014-12-12T03:07:52Z-
dc.date.available2014-12-12T03:07:52Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009433512en_US
dc.identifier.urihttp://hdl.handle.net/11536/81620-
dc.description.abstract有限資源的專案排程問題(Resource-Constrained Project Scheduling,RCPSP)具有複雜的求解特性。過去已有許多學者提出不同方法來求解,其中Debels et al. (2006)演算法是目前相對較佳的方法。本研究結合共識因子和田口方法提出多種巨集演算法(meta-heuristics),希望找出一種演算法,能在績效上改進Debels et al. (2006)的演算法。本研究使用1560個案例,分成9種情境進行實驗。與Debels et al. (2006)演算法相比,本研究所發展的演算法僅在22%的情境表現較佳,在另22%的情境績效相近,卻在56%的情境中表現較不如過去的演算法。zh_TW
dc.description.abstractResource-constrained project scheduling is a NP-hard problem. In the last few decades, several meta-heuristics algorithms have been proposed to solve the problem. The algorithm proposed by Debels et al. (2006) is by far the most leading one. To develop a better algorithm, we applied the notions of consensus and Taguchi genetic operators and proposed various meta-heuristics algorithms. Extensive numerical tests have been carried out. These tests include 1560 problem instances, which are categorized into 9 scenarios. Compared with the algorithm proposed by Debels et al. (2006), our algorithm excel in 22% scenarios, has a tie in 22% scenarios, and lose in 56% scenarios.en_US
dc.language.isozh_TWen_US
dc.subject專案排程zh_TW
dc.subject資源限制zh_TW
dc.subject共識因子zh_TW
dc.subject田口方法zh_TW
dc.subjectProject schedulingen_US
dc.subjectResource-Constraineden_US
dc.subjectConsensusen_US
dc.subjectTaguchi methodsen_US
dc.title有限資源專案排程之巨集啟發式演算法的比較zh_TW
dc.titleA Comparison of Meta-heuristics Algorithms for Resource-Constrained Project Schedulingen_US
dc.typeThesisen_US
dc.contributor.department工業工程與管理學系zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 351201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.