完整後設資料紀錄
DC 欄位語言
dc.contributor.author凃凱騫en_US
dc.contributor.authorKai-Chien Tuen_US
dc.contributor.author周雨田en_US
dc.contributor.authorRay Yeutien Chouen_US
dc.date.accessioned2014-12-12T03:08:21Z-
dc.date.available2014-12-12T03:08:21Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009437520en_US
dc.identifier.urihttp://hdl.handle.net/11536/81801-
dc.description.abstract本文針對不同投資組合風險值模型進行評比,並以S&P500 股價指數、那斯 達克股價指數和道瓊工業指數週資料為研究對象,實證結果發現將實現波動性基 礎下的DCC ( Dynamic Conditional Correlation ) 模型,在較高信心水準下,其準 確性較傳統報酬基礎下的模型良好,但整體而言,仍然以變幅基礎下的CCC ( Constant Conditional Correlation ) 模型表現最佳。 在研究中進一步改變了投資組合權重以及投資組合標的,其結果對於模型的 影響並不大,顯示出當投資權重改變或投資標的改變時不需要變動風險值估計模 型。zh_TW
dc.description.abstractThis paper investigates the difference portfolio Value-at-Risk models. We use the weekly data about the stock indices of S&P500 , NASDAQ , and DOW JONES for empirical analysis. The empirical results indicate that a DCC( Dynamic Conditional Correlation ) model based on realized volatility has better performance than the traditional return-based models. As a whole , the CCC( Constant Conditional Correlation ) model based on the range has the best performance. Furthermore , we changes the portfolio weights and the portfolio components. It doesn’t affect performance of the models. It showed that we don’t need to change Value-at-Risk models when the portfolio weights or components change.en_US
dc.language.isozh_TWen_US
dc.subject風險值zh_TW
dc.subject實現波動性zh_TW
dc.subject變幅zh_TW
dc.subjectCARRzh_TW
dc.subjectDCCzh_TW
dc.subjectValue-at-Risken_US
dc.subjectrealized volatilityen_US
dc.subjectrangeen_US
dc.subjectCARRen_US
dc.subjectDCCen_US
dc.title實現波動率在DCC 模型上之應用zh_TW
dc.titleA DCC Model Based on Realized Volatilityen_US
dc.typeThesisen_US
dc.contributor.department經營管理研究所zh_TW
顯示於類別:畢業論文