Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorHwang, F. K.en_US
dc.date.accessioned2014-12-08T15:10:45Z-
dc.date.available2014-12-08T15:10:45Z-
dc.date.issued2008-11-01en_US
dc.identifier.issn1572-5286en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disopt.2008.04.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/8221-
dc.description.abstractMacula proposed a novel construction of pooling designs which can effectively identify positive clones and also proposed a decoding method. However, the probability of all unresolved positive clone is hard to analyze. In this paper we propose an improved decoding method and show that ford d = 3 an exact probability analysis is possible. Further, we derive necessary and Sufficient conditions for a positive clone to be unresolved and gave a modified construction which avoids this necessary condition, thus resulting; in a 3-separable matrix. (c) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subject3-separable matricesen_US
dc.subjectMacula's constructionen_US
dc.titleA new construction of 3-separable matrices via an improved decoding of Macula's constructionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disopt.2008.04.002en_US
dc.identifier.journalDISCRETE OPTIMIZATIONen_US
dc.citation.volume5en_US
dc.citation.issue4en_US
dc.citation.spage700en_US
dc.citation.epage704en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000260086600004-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000260086600004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.