標題: Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery
作者: Hu, Shang-Hsiu
Tsai, Chia-Hui
Liao, Chen-Fu
Liu, Dean-Mo
Chen, San-Yuan
材料科學與工程學系
Department of Materials Science and Engineering
公開日期: 21-十月-2008
摘要: In this study, a magnetic-sensitive microcapsule was prepared using Fe3O4/poly(allylamine) (Fe3O4/PAH) polyelectrolyte to construct the shell. Structural integrity, microstructural evolution, and corresponding release behaviors of fluorescence dyes and doxorubicin were systematically investigated. Experimental observations showed that the presence of the magnetic nanoparticles in the shell structure allowed the shell structure to evolve from nanocavity development to final rupture of the shell under a given magnetic stimulus of different time durations. Such a microstructural evolution of the magnetic sensitive shell structure explained a corresponding variation of the drug release profile, from relatively slow release to burst-like behavior at different stages of stimulus. It has proposed that the presence of magnetic nanoparticles produced heat, due to magnetic energy dissipation (as Brown and Neel relaxations), and mechanical vibration and motion that induced stress development in the thin shell. Both mechanisms significantly accelerated the relaxation of the shell structure, causing such a microstructural evolution. With such a controllable microstructural evolution of the magnetic-sensitive shell structure, active substances can be well-regulated in a manageable manner with a designable profile according to the time duration under magnetic field. A cell culture study also indicated that the magnetic-sensitive microcapsules allowed a rapid uptake by the A549 cell line, a cancerous cell line, suggesting that the magnetic-sensitive microcapsule with controllable rupturing behavior of the shell offers a potential and effective drug carrier for anticancer applications.
URI: http://dx.doi.org/10.1021/la801138e
http://hdl.handle.net/11536/8239
ISSN: 0743-7463
DOI: 10.1021/la801138e
期刊: LANGMUIR
Volume: 24
Issue: 20
起始頁: 11811
結束頁: 11818
顯示於類別:期刊論文


文件中的檔案:

  1. 000260049300066.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。