Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Hsiuyingen_US
dc.date.accessioned2014-12-08T15:10:55Z-
dc.date.available2014-12-08T15:10:55Z-
dc.date.issued2008-09-15en_US
dc.identifier.issn0167-9473en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.csda.2008.07.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/8349-
dc.description.abstractPrediction interval is a widely used tool in industrial applications to predict the distribution of future observations. The exact minimum coverage probability and the average coverage probability of the conventional prediction interval for a discrete random variable have not been accurately derived in the literature. In this paper, procedures to compute the exact minimum confidence levels and the average confidence levels of the prediction intervals for a discrete random variable are proposed. These procedures are illustrated with examples and real data applications. Based on these procedures, modified prediction intervals with the minimum coverage probability or the average coverage probability close to the nominal level can be constructed. (c) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleCoverage probability of prediction intervals for discrete random variablesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.csda.2008.07.017en_US
dc.identifier.journalCOMPUTATIONAL STATISTICS & DATA ANALYSISen_US
dc.citation.volume53en_US
dc.citation.issue1en_US
dc.citation.spage17en_US
dc.citation.epage26en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000259710400002-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000259710400002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.