Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Jwu-Shengen_US
dc.contributor.authorSu, Tzung-Minen_US
dc.date.accessioned2014-12-08T15:10:59Z-
dc.date.available2014-12-08T15:10:59Z-
dc.date.issued2008-09-01en_US
dc.identifier.issn0218-0014en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218001408006685en_US
dc.identifier.urihttp://hdl.handle.net/11536/8413-
dc.description.abstractThis work presents a flexible framework for recognizing 3D objects from 2D views. Similarity-based aspect-graph, which contains a set of aspects and prototypes for these aspects, is employed to represent the database of 3D objects. An incremental database construction method that maximizes the similarity of views in the same aspect and minimizes the similarity of prototypes is proposed as the core of the framework to build and update the aspect-graph using 2D views randomly sampled from a viewing sphere. The proposed framework is evaluated on various object recognition problems, including 3D object recognition, human posture recognition and scene recognition. Shape and color features are employed in different applications with the proposed framework and the top three matching rates show the efficiency of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectAspect-graphen_US
dc.subjectobject representationen_US
dc.subjectobject recognitionen_US
dc.subjecthuman posture recognitionen_US
dc.subjectscene recognitionen_US
dc.titleFLEXIBLE 3D OBJECT RECOGNITION FRAMEWORK USING 2D VIEWS VIA A SIMILARITY-BASED ASPECT-GRAPH APPROACHen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218001408006685en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCEen_US
dc.citation.volume22en_US
dc.citation.issue6en_US
dc.citation.spage1141en_US
dc.citation.epage1169en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000262598100003-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000262598100003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.