完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorSiana, Lindaen_US
dc.date.accessioned2014-12-08T15:11:00Z-
dc.date.available2014-12-08T15:11:00Z-
dc.date.issued2008-09-01en_US
dc.identifier.issn1562-2479en_US
dc.identifier.urihttp://hdl.handle.net/11536/8425-
dc.description.abstractThe proposed efficient human detection system is based on an adaptive neural fuzzy network (ANFN). In the preprocessing process, we apply a background subtraction algorithm with Gaussian mixture model (GMM) background model to extract moving objects, and adopt a shadow elimination process to eliminate some noise and irregular moving objects. The modified independent component analysis (mICA) based conditional entropy is presented to extract and select the efficient features (independent components). Furthermore, we use an adaptive neural fuzzy network as a human detection system to recognize human objects. The ANFN model uses a functional link neural network (FLNN) to create the consequent part of the fuzzy rules. The orthogonal polynomial is applied as a functional expansion of the FLNN. The learning process of ANFN consists of structure learning and parameter learning. The structure learning depends on the entropy measure to determine the number of fuzzy rules. The parameter learning, based on the back propagation method, is used to adjust the membership function and corresponding weights of the FLNN. Finally, the proposed human detection system is applied in various circumstances. The results of this study demonstrate the accuracy of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectConditional entropyen_US
dc.subjectGMMen_US
dc.subjectICAen_US
dc.subjectHuman detection systemen_US
dc.subjectneural fuzzy networken_US
dc.subjectshadow detectionen_US
dc.titleAn Efficient Human Detection System Using Adaptive Neural Fuzzy Networksen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF FUZZY SYSTEMSen_US
dc.citation.volume10en_US
dc.citation.issue3en_US
dc.citation.spage150en_US
dc.citation.epage160en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000260349600003-
dc.citation.woscount6-
顯示於類別:期刊論文