Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, P. Y.en_US
dc.contributor.authorChen, C. H.en_US
dc.contributor.authorWang, H.en_US
dc.contributor.authorTsai, J. H.en_US
dc.contributor.authorNi, W. X.en_US
dc.date.accessioned2014-12-08T15:11:02Z-
dc.date.available2014-12-08T15:11:02Z-
dc.date.issued2008-08-18en_US
dc.identifier.issn1094-4087en_US
dc.identifier.urihttp://dx.doi.org/10.1364/OE.16.012806en_US
dc.identifier.urihttp://hdl.handle.net/11536/8459-
dc.description.abstractIn this article, we present a genetic algorithm (GA) as one branch of artificial intelligence (AI) for the optimization-design of the artificial magnetic metamaterial whose structure is automatically generated by computer through the filling element methodology. A representative design example, metamaterials with permeability of negative unity, is investigated and the optimized structures found by the GA are presented. It is also demonstrated that our approach is effective for the synthesis of functional magnetic and electric metamaterials with optimal structures. This GA-based optimization-design technique shows great versatility and applicability in the design of functional metamaterials. (C) 2008 Optical Society of America.en_US
dc.language.isoen_USen_US
dc.titleSynthesis design of artificial magnetic metamaterials using a genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1364/OE.16.012806en_US
dc.identifier.journalOPTICS EXPRESSen_US
dc.citation.volume16en_US
dc.citation.issue17en_US
dc.citation.spage12806en_US
dc.citation.epage12818en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000259268700042-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. 000259268700042.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.