完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKao, Han-Yingen_US
dc.contributor.authorHuang, Chia-Huien_US
dc.contributor.authorKao, Tai-Chien_US
dc.contributor.authorKao, Han-Chungen_US
dc.date.accessioned2014-12-08T15:11:06Z-
dc.date.available2014-12-08T15:11:06Z-
dc.date.issued2008-08-01en_US
dc.identifier.issn1349-4198en_US
dc.identifier.urihttp://hdl.handle.net/11536/8507-
dc.description.abstractTraditional Chinese medicine (TCM) has been developed for more than four thousand years. It is a complete medical system embracing diagnosis, treatment and prevention. However, the knowledge of TCM is linguistically vague and usually involves subjective judgments, which makes automated inference challenging. This study proposes a novel approach for knowledge modeling in TCM, fuzzy influence diagrams (FID). Considering the subjective knowledge as well as linguistic fuzziness in TCM, possibility distributions are used to model the uncertainty and causal relationships in influence diagrams, which extend the conventional influence diagrams into fuzzy influence diagrams. The FID provides a general platform for answering various queries in TCM, such as prognosis, diagnosis, and optimal treatment. The FID can bridge the qualitative fuzziness and quantitative numerical models in knowledge bases for TCM.en_US
dc.language.isoen_USen_US
dc.subjecttraditional Chinese medicineen_US
dc.subjectknowledge modelsen_US
dc.subjectfuzzy influence diagramsen_US
dc.subjectpossibility distributionsen_US
dc.titleKnowledge modeling in traditional Chinese medicine with fuzzy influence diagramsen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROLen_US
dc.citation.volume4en_US
dc.citation.issue8en_US
dc.citation.spage2057en_US
dc.citation.epage2067en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000258427400021-
dc.citation.woscount3-
顯示於類別:期刊論文