Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chin-Chenen_US
dc.contributor.authorKuo, Yen-Tingen_US
dc.contributor.authorTai, Wen-Kaien_US
dc.date.accessioned2014-12-08T15:11:07Z-
dc.date.available2014-12-08T15:11:07Z-
dc.date.issued2008-08-01en_US
dc.identifier.issn0218-2130en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218213008004126en_US
dc.identifier.urihttp://hdl.handle.net/11536/8528-
dc.description.abstractIntensive search schemes are commonly adopted in patched-based texture synthesis to identity the proper neighbors of each patch. However, they do not always provide perfect solutions. This work presents a genetic algorithm in evolutionary computation for patch-based texture synthesis. The representation of an input source texture is first adjusted. Then, the synthesizing result is generated and refined by the selection of individuals based on their fitness and executing crossover and mutation until the criteria are met. After the entire execution, a large output texture is generated with texture features similar to the source texture. Because this approach optimizes the genetic algorithm, the results are satisfactory.en_US
dc.language.isoen_USen_US
dc.subjectGenetic algorithmen_US
dc.subjectevolutionary computationen_US
dc.subjecttexturingen_US
dc.subjecttexture synthesisen_US
dc.titleGENETIC-BASED APPROACH FOR SYNTHESIZING TEXTUREen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218213008004126en_US
dc.identifier.journalINTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLSen_US
dc.citation.volume17en_US
dc.citation.issue4en_US
dc.citation.spage731en_US
dc.citation.epage743en_US
dc.contributor.department多媒體工程研究所zh_TW
dc.contributor.departmentInstitute of Multimedia Engineeringen_US
dc.identifier.wosnumberWOS:000260806800007-
dc.citation.woscount1-
Appears in Collections:Articles