標題: Clusters of Nucleotide Substitutions and Insertion/Deletion Mutations Are Associated with Repeat Sequences
作者: McDonald, Michael J.
Wang, Wei-Chi
Huang, Hsien-Da
Leu, Jun-Yi
生物科技學系
生物資訊及系統生物研究所
Department of Biological Science and Technology
Institude of Bioinformatics and Systems Biology
公開日期: 1-六月-2011
摘要: The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.
URI: http://dx.doi.org/10.1371/journal.pbio.1000622
http://hdl.handle.net/11536/8798
ISSN: 1544-9173
DOI: 10.1371/journal.pbio.1000622
期刊: PLOS BIOLOGY
Volume: 9
Issue: 6
結束頁: 
顯示於類別:期刊論文


文件中的檔案:

  1. 000292191200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。