标题: | 智慧型生物讯号诱导药物释放系统前瞻研究---以癫痫症为模式---应用于讯号诱导药物释放系统之智慧型生医复合材料结构制程与性质研究---总计画及子计画二(I) Frontier Research on Smart Biologically-Stimuli Drug Delivery System Based on Epilepsy (I) |
作者: | 陈三元 CHEN San-Yuan 国立交通大学材料科学与工程学系(所) |
关键字: | 奈米复合材料结构;药物释放系统;侦测系统;癫痫症;Nano-structured composite;Drug delivery system;Embedded system;Epilepsy |
公开日期: | 2007 |
摘要: | 传统的药物释放仅利用药物载体的特性与所在的环境变化来运作,在人体中并未真正达到 完善地控制释放的目标,因此更完善的药物输送系统应当利用生物性刺激来达到更精准释放的 效果,换句话说,当病人需要药物时,药物载体可以自我“侦测”出此讯号,并且立即的释放 所需的药物。此类的生物刺激型的药物载体可使用于慢性疾病,例如本计画之重点疾病研究- 癫痫,如此处理之后相信可减少释放时不必要的副作用产生与不当的释放药物剂量。 本研究计画主要是要发展一种具有智慧型快速反应型的药物结构释放系统,因此本跨领域 研究团队提出一创新的构想,利用药物载体的制程控制,来发展具有电/磁敏感性的奈米或次 微米的核壳胶囊结构,进而利用自组装及表面偶合,来建构智慧型奈米复合生医材料厚膜 (membrane)元件结构,此智慧型载体因本身奈米复合结构具有高度的电/磁敏感性,可感应来 自当人体内部由于疾病发作时所产生的病理讯号或病征,例如癫痫症的瞬间放电,经由讯号的 判读、侦测及转换成为电场或磁场诱导之讯号,来刺激或启动此智慧型奈米复合材料结构及形 态的改变,进而释放出适当药物剂量,以达到有效疾病预防或治疗的效果。而且药物的释放量 大小及模式,是可以经由生物体所产生的电场讯号大小与此智慧型载体内部的电感应分子或奈 米粒子的浓度与大小来操控及设计。此外这种智慧型的奈米复合载体,因奈米结构的存在,可 以增加其ON/OFF 抗疲劳的特性。 由于癫痫症是一种具有危险性的慢性疾病,在发作时会突然产生局部或全面的大脑异常放 电的讯号,因此本研究计画将开发即时侦测此异常癫痫波之系统(subproject 1)并且触发药物输 送系统(subproject 2)以便在癫痫大鼠大脑局部释放抗癫痫药物(subproject 3),期望能够即时抑 制此突发性之异常癫痫波,以降低传统药物控制下突发性癫痫发作时可能造成的个人与社会之 损失。本计划整合奈米材料科学与生物领域,设计与发展出新颖的药物输送系统,透过生物反 应或刺激讯号来,达到控制释放药物。因此整个研发团队至少需要有材料、电机资讯及生物医 学等相关人力来参与。包括(1)交通大学/材料科学与工程学系 陈三元教授 (2)成功大学/资讯 工程系及医学资讯所 梁胜富助理教授 (3)成功大学/认知科学所 萧富仁副教授。来研发此种 利用奈米复合材料及结构,使其具有自我诊断与释药,以达到疾病预防与治疗。 Controlled drug release has been received greatest attention worldwide since the past few decades because it revolutionizes the use of a given active drug with a therapeutically smarter, more effective, and more patient-wide compliant manner to treat diseases. However, up-to-date, almost all of those existing drug delivery systems required an external control system to trigger the release of drug and in some cases, can hardly meet immediate urgent physiological needs and with dosing compatibly match chronological changes. Therefore, it is more technically desirable and therapeutically effective if the fast-acting drug delivery system can be triggered by a biologically-induced mechanism and releases drug effectively and locally into patient’s body instead of dosing via an externally-controlled system. In other words, drug can be released in a highly controllable manner if the drug delivery system is able to “sense” or “detect” the need of patient according to the disease state of patients, in particular for chronic diseases such as dysrhythmic complications, i.e., epilepsy. To fulfill such a novel drug delivery system, this research proposal designs 3 subprojects, included signaling (smart embedded) system, a smart-gel-based nanocomposite and its biocompatibility evaluation, and in-vivo disease model. The signaling system is focusing on detection and translation of a specific biological response, i.e, spike-wave discharges for epileptic syndrome, from disease host (rat or rabbit), and a suitable signal is further triggering a magnetic or electrical field to cause a bursting of drug from the smartgel composites into the disease host. The layer-by-layer deposition and nanocapsule assembly process will be used to develop the smartgel composite with core-shell structure where the drugs were entrapped within core. The dosing of this anti-epileptic drug has to be designed according to the intensity of the signal and the controlled deformation of the field-stimuli smartgel, where a therapeutically effective dosing can be properly administered. The research objectives of this proposal are then aimed to (1) integrate field-sensitive nanomaterials technology to life science (2) build a novel drug delivery system that has yet to be developed, (3) fulfill the practical and clinical needs for patients suffering from chronic diseases (epilepsy), (4) build physical and biological models in relation to both in-vitro and in-vivo evaluation for such a “biosignal”-“field intensity”-“dosing” correlation, and (5) establish a medical device system to eliminate or minimize in advance the occurrence of a disease before it is fatally activated. Therefore, an intimate collaboration of different expertises from the fields including (1) computer science, (2) biomaterial science, drug delivery technology, and (3) biomedical science will be systematically integrate in order to build up a smart and useful biologically-triggered drug delivery system for epilepsy treatment. |
官方说明文件#: | NSC96-2627-B009-006 |
URI: | http://hdl.handle.net/11536/88339 https://www.grb.gov.tw/search/planDetail?id=1469397&docId=263662 |
显示于类别: | Research Plans |