完整後設資料紀錄
DC 欄位語言
dc.contributor.author李建平en_US
dc.contributor.authorLEE CHIEN-PINGen_US
dc.date.accessioned2014-12-13T10:28:39Z-
dc.date.available2014-12-13T10:28:39Z-
dc.date.issued2007en_US
dc.identifier.govdocNSC96-2221-E009-211-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/88481-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1463616&docId=262300en_US
dc.description.abstract近年來,半導體奈米結構及量子元件儼然已成為一個主要的研究課題,分子束磊晶 系統中已經可已成長出各式各樣化的自組式奈米結構,基於其完美之磊晶界面,可使得 物理研究及元件應用上得到良好的成果,然而過去這些元件大部分是使用砷及磷的三五 族化合物半導體結構,此種結構皆屬於第一類異質界面結構,也就是電子及電洞都被侷 限於量子結構中。但是另一種五族元素—銻,因為其晶格常數較一般常見之砷化鎵及磷 化銦基板來的大,所以過去較少被使用於三五族化合物半導體中。 銻化合物半導體具有較大的能隙變化範圍,因此使得它在長波長的光電元件應用中 具有重要的地位,其中銻化銦則具有目前已知之化合物半導體中最大的電子遷移率。此 種元素除了具有較大之能隙變化範圍外,它與其他化合物半導體(如:砷化鎵、磷化銦) 的異質界面,則屬於第二類或是第三類異質界面結構,此種特殊之異質界面可以變化出 很多有趣的物理研究及元件應用,且此種特性僅見於銻元素的化合物半導體中。 在我們的計畫中,我們計畫成長銻化鎵及銻化銦奈米結構於砷化鎵基板上,並研究 其光學及電子遷移特性。在此種第二類異質界面結構之量子點中,電洞是被侷限於價帶 之量子結構中,而電子則是因為電洞之庫倫作用力而分佈於此奈米結構周圍。我們近期 的研究中發現,在此種小尺寸的量子結構中,其依然具有良好的光響應強度,如此我們 便可以將此奈米結構應用於元件中。另外,我們實驗室也架設了一套低溫強磁場的量測 設備,如此可使我們更深入的瞭解此奈米結構的特性。 此外,銻元素也是一種良好的界面活性劑,可以使得我們磊晶的結構表面維持平 坦,且維持良好之磊晶品質,我們將利用此特性成長高應力的砷化銦鎵磊晶層,使得發 光波長可以達到2um。 多年來,本實驗室對於奈米結構及量子元件的研究有著深厚的基礎,且對於分子束 磊晶中銻材料的使用大約有一年之久,對於銻化合物磊晶技術的掌握也已成熟,並對於 此種第二類異質界面結構的特性也有諸多的瞭解,因此可以掌握此材料的特性並設計新 的元件結構。若能得到此計畫的支持,我們將可以對於銻化合物的奈米結構及量子元件 有更深入的研究。zh_TW
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject分子束磊晶zh_TW
dc.subject鍗化銦鎵zh_TW
dc.subject量子點zh_TW
dc.subject第二類異質介面結構zh_TW
dc.subjectMBEen_US
dc.subjectInGaSben_US
dc.subjectquantum doten_US
dc.subjecttype-II band alignmenten_US
dc.title銻化物基材之量子結構及元件zh_TW
dc.titleAntimonide Based Quantum Structures and Devicesen_US
dc.typePlanen_US
dc.contributor.department國立交通大學電子工程學系及電子研究所zh_TW
顯示於類別:研究計畫