Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Ming-Chia | en_US |
dc.contributor.author | Lyu, Ming-Jiea | en_US |
dc.date.accessioned | 2014-12-08T15:11:34Z | - |
dc.date.available | 2014-12-08T15:11:34Z | - |
dc.date.issued | 2011-05-01 | en_US |
dc.identifier.issn | 1078-0947 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3934/dcds.2011.30.243 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/8884 | - |
dc.description.abstract | In this paper, we consider a one-parameter family F(lambda) of continuous maps on R(m) or R(m) x R(k) with the singular map F(0) having one of the forms (i) F(0)(x) = f(x); (ii) F(0)(x,y) = (f(x), g(x)), where g : R(m) -> R(k) is continuous, and (iii) F(0)(x; y) = (f(x), g(x,y)), where g : R(m)xR(k) -> R(k) is continuous and locally trapping along the second variable y. We show that if f : R(m) -> R(m) is a C(1) diffeomorphism having a topologically crossing homoclinic point, then F(lambda) has positive topological entropy for all lambda close enough to 0. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Multidimensional perturbation | en_US |
dc.subject | topological entropy | en_US |
dc.subject | topological crossing | en_US |
dc.subject | homoclinicity | en_US |
dc.title | POSITIVE TOPOLOGICAL ENTROPY FOR MULTIDIMENSIONAL PERTURBATIONS OF TOPOLOGICALLY CROSSING HOMOCLINICITY | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3934/dcds.2011.30.243 | en_US |
dc.identifier.journal | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS | en_US |
dc.citation.volume | 30 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 243 | en_US |
dc.citation.epage | 252 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000295086900013 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |