Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Ming-Chiaen_US
dc.contributor.authorLyu, Ming-Jieaen_US
dc.date.accessioned2014-12-08T15:11:34Z-
dc.date.available2014-12-08T15:11:34Z-
dc.date.issued2011-05-01en_US
dc.identifier.issn1078-0947en_US
dc.identifier.urihttp://dx.doi.org/10.3934/dcds.2011.30.243en_US
dc.identifier.urihttp://hdl.handle.net/11536/8884-
dc.description.abstractIn this paper, we consider a one-parameter family F(lambda) of continuous maps on R(m) or R(m) x R(k) with the singular map F(0) having one of the forms (i) F(0)(x) = f(x); (ii) F(0)(x,y) = (f(x), g(x)), where g : R(m) -> R(k) is continuous, and (iii) F(0)(x; y) = (f(x), g(x,y)), where g : R(m)xR(k) -> R(k) is continuous and locally trapping along the second variable y. We show that if f : R(m) -> R(m) is a C(1) diffeomorphism having a topologically crossing homoclinic point, then F(lambda) has positive topological entropy for all lambda close enough to 0.en_US
dc.language.isoen_USen_US
dc.subjectMultidimensional perturbationen_US
dc.subjecttopological entropyen_US
dc.subjecttopological crossingen_US
dc.subjecthomoclinicityen_US
dc.titlePOSITIVE TOPOLOGICAL ENTROPY FOR MULTIDIMENSIONAL PERTURBATIONS OF TOPOLOGICALLY CROSSING HOMOCLINICITYen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/dcds.2011.30.243en_US
dc.identifier.journalDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMSen_US
dc.citation.volume30en_US
dc.citation.issue1en_US
dc.citation.spage243en_US
dc.citation.epage252en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000295086900013-
dc.citation.woscount0-
Appears in Collections:Articles