標題: POSITIVE TOPOLOGICAL ENTROPY FOR MULTIDIMENSIONAL PERTURBATIONS OF TOPOLOGICALLY CROSSING HOMOCLINICITY
作者: Li, Ming-Chia
Lyu, Ming-Jiea
應用數學系
Department of Applied Mathematics
關鍵字: Multidimensional perturbation;topological entropy;topological crossing;homoclinicity
公開日期: 1-五月-2011
摘要: In this paper, we consider a one-parameter family F(lambda) of continuous maps on R(m) or R(m) x R(k) with the singular map F(0) having one of the forms (i) F(0)(x) = f(x); (ii) F(0)(x,y) = (f(x), g(x)), where g : R(m) -> R(k) is continuous, and (iii) F(0)(x; y) = (f(x), g(x,y)), where g : R(m)xR(k) -> R(k) is continuous and locally trapping along the second variable y. We show that if f : R(m) -> R(m) is a C(1) diffeomorphism having a topologically crossing homoclinic point, then F(lambda) has positive topological entropy for all lambda close enough to 0.
URI: http://dx.doi.org/10.3934/dcds.2011.30.243
http://hdl.handle.net/11536/8884
ISSN: 1078-0947
DOI: 10.3934/dcds.2011.30.243
期刊: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Volume: 30
Issue: 1
起始頁: 243
結束頁: 252
顯示於類別:期刊論文