完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 傅恆霖 | en_US |
dc.contributor.author | FU HUNG-LIN | en_US |
dc.date.accessioned | 2014-12-13T10:30:19Z | - |
dc.date.available | 2014-12-13T10:30:19Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.govdoc | NSC94-2115-M009-017 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/90140 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=1093418&docId=205901 | en_US |
dc.description.abstract | 令G為一圖,如果圖G的邊集合E(G)可以分割成一些子集合,使得每一個子集合 所導出的子圖都與圖H同構,則稱G有一個H-分割或H-設計,通常以H|G表示。由於 一個平衡不完全區組設計(BIBD),2-(,,vkλ)設計的存在性對應於|vkKKλ是否成立的 研究,所以圖-設計的研究不但可以處理BIBD的建構問題,隨著G與H的選擇更可以 推廣至更一般化的組合設計之研究。例如,當G為時,建構出來的就是可分組 ()mnKλ 設計(GDD),而當H為圈(Cycle)時,可得到圈系等等。 在這個研究計畫中,我們除了繼續探討傳統的BIBD與GDD的存在性,我們將研 究以下幾個問題: (1) 令H為,,G為kC3k?() G m δ?的n點圖。當 ()mfn=時,何種f能使得 H|G ? (Nash-Williams猜測當3k=時()3/4fnn=. (1970)) (2) 令H為,,為kC3k?'GnK的子圖。何種能使得'G|'nHKG?? (3) 探討H不為的情況,例如kCrHKKc =×,在DNA Library Screening |rc n KKK×的探 討扮演著非常重要的角色。 (4) 除了一般的分割之外,探討循環分割(Cyclic Decomposition)以及旋轉分割 (k-Rotational)的可行性。 | zh_TW |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.title | 圖---設計的研究(I) | zh_TW |
dc.title | A Study of Graph-Designs(I) | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 交通大學應用數學系 | zh_TW |
顯示於類別: | 研究計畫 |