Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Heng Huaten_US
dc.contributor.authorLong, Lingen_US
dc.contributor.authorYang, YiFanen_US
dc.date.accessioned2014-12-08T15:11:50Z-
dc.date.available2014-12-08T15:11:50Z-
dc.date.issued2011-04-01en_US
dc.identifier.issn0002-9890en_US
dc.identifier.urihttp://dx.doi.org/10.4169/amer.math.monthly.118.04.316en_US
dc.identifier.urihttp://hdl.handle.net/11536/9078-
dc.description.abstractIt is well known that if p is a prime such that p I (mod 4). then p can be expressed as a sum of two squares. Several proofs of this fact are known and one of them, due to E. Jacobsthal, involves the identity p = x(2) + y(2) with x and y expressed explicitly in terms of sums involving the Legendre symbol. These sums are now known as the Jacobsthal sums. In this short note, we prove that if p equivalent to 1 (mod 6). then 3p = u(2) + uv + nu(2) for some integers u and v using an analogue of Jacobsthal's identity.en_US
dc.language.isoen_USen_US
dc.titleA Cubic Analogue of the Jacobsthal Identityen_US
dc.typeArticleen_US
dc.identifier.doi10.4169/amer.math.monthly.118.04.316en_US
dc.identifier.journalAMERICAN MATHEMATICAL MONTHLYen_US
dc.citation.volume118en_US
dc.citation.issue4en_US
dc.citation.spage316en_US
dc.citation.epage326en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000288928400003-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000288928400003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.