完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chan, Heng Huat | en_US |
dc.contributor.author | Long, Ling | en_US |
dc.contributor.author | Yang, YiFan | en_US |
dc.date.accessioned | 2014-12-08T15:11:50Z | - |
dc.date.available | 2014-12-08T15:11:50Z | - |
dc.date.issued | 2011-04-01 | en_US |
dc.identifier.issn | 0002-9890 | en_US |
dc.identifier.uri | http://dx.doi.org/10.4169/amer.math.monthly.118.04.316 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9078 | - |
dc.description.abstract | It is well known that if p is a prime such that p I (mod 4). then p can be expressed as a sum of two squares. Several proofs of this fact are known and one of them, due to E. Jacobsthal, involves the identity p = x(2) + y(2) with x and y expressed explicitly in terms of sums involving the Legendre symbol. These sums are now known as the Jacobsthal sums. In this short note, we prove that if p equivalent to 1 (mod 6). then 3p = u(2) + uv + nu(2) for some integers u and v using an analogue of Jacobsthal's identity. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A Cubic Analogue of the Jacobsthal Identity | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4169/amer.math.monthly.118.04.316 | en_US |
dc.identifier.journal | AMERICAN MATHEMATICAL MONTHLY | en_US |
dc.citation.volume | 118 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 316 | en_US |
dc.citation.epage | 326 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000288928400003 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |