標題: A Cubic Analogue of the Jacobsthal Identity
作者: Chan, Heng Huat
Long, Ling
Yang, YiFan
應用數學系
Department of Applied Mathematics
公開日期: 1-四月-2011
摘要: It is well known that if p is a prime such that p I (mod 4). then p can be expressed as a sum of two squares. Several proofs of this fact are known and one of them, due to E. Jacobsthal, involves the identity p = x(2) + y(2) with x and y expressed explicitly in terms of sums involving the Legendre symbol. These sums are now known as the Jacobsthal sums. In this short note, we prove that if p equivalent to 1 (mod 6). then 3p = u(2) + uv + nu(2) for some integers u and v using an analogue of Jacobsthal's identity.
URI: http://dx.doi.org/10.4169/amer.math.monthly.118.04.316
http://hdl.handle.net/11536/9078
ISSN: 0002-9890
DOI: 10.4169/amer.math.monthly.118.04.316
期刊: AMERICAN MATHEMATICAL MONTHLY
Volume: 118
Issue: 4
起始頁: 316
結束頁: 326
顯示於類別:期刊論文


文件中的檔案:

  1. 000288928400003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。