Full metadata record
DC FieldValueLanguage
dc.contributor.author巫木誠en_US
dc.contributor.authorWU MUH-CHERNGen_US
dc.date.accessioned2014-12-13T10:31:21Z-
dc.date.available2014-12-13T10:31:21Z-
dc.date.issued2013en_US
dc.identifier.govdocNSC100-2221-E009-059-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/90864-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2851459&docId=403876en_US
dc.description.abstract本研究探討工序固定之製造單元排程問題(permutation manufacturing-cell flow shop,PMFS) 。過去文獻多數是用進化演算法(meta-heuristic algorithms)求解此問題,所採用之解表達法稱為Sold。本研究提出一新的解表達法(簡稱Snew),然後依照此表達法發展進化式演算法。本研究據此比較四種演算法:GA_Snew, GA_Sold, ACO_Snew, ACO_Sold。實驗結果顯示,GA_Snew較GA_Sold為佳,ACO_Snew較ACO_Sold為佳。本研究也以實驗方式解釋,造成此績效差異之原因。zh_TW
dc.description.abstractMeta-heuristic algorithms have been widely used in solving scheduling problems; many prior studies focused on how to enhance existing algorithmic mechanisms. Aside from this traditional track, this research attempts to advocate a new perspective—developing new chromosome (solution) representation schemes might be able to improve the performance of existing meta-heuristic algorithms. Such a research claim is based on experiment findings obtained from solving a scheduling problem, called permutation manufacturing-cell flow shop (PMFS). We compare the effectiveness of two chromosome representation schemes (Sold and Snew) while they are embedded in a particular meta-heuristic algorithm to solve the scheduling problem. Two existing meta-heuristic algorithms, genetic algorithm (GA) and ant colony optimization (ACO), are tested. We herein denote a tested meta-heuristic algorithm by X_Y, where X represents an algorithmic mechanism and Y represents a chromosome representation. Experiment results indicate that the GA_ Snew outperforms GA_Sold, and ACO_Snew also outperforms ACO_Sold. These findings shed a light on the track of developing new chromosome representations in the research of meta-heuristic algorithms.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject染色體表達法zh_TW
dc.subject基因演算法zh_TW
dc.subject蟻群演算法zh_TW
dc.subjectChromosome Representationen_US
dc.subjectGenetic algorithmen_US
dc.subjectAnt Colony Optimizationen_US
dc.subjectSchedulingen_US
dc.title以進化搜尋演算法求解流線群組排程問題zh_TW
dc.titleUsing Meta-heuristics Algorithms for Solving Flow-Shop Family-based Scheduling Problemsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學工業工程與管理學系(所)zh_TW
Appears in Collections:Research Plans