Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Shih-Yuen_US
dc.contributor.authorGe, Zheng-Mingen_US
dc.date.accessioned2014-12-08T15:11:52Z-
dc.date.available2014-12-08T15:11:52Z-
dc.date.issued2011-04-01en_US
dc.identifier.issn0924-090Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11071-010-9847-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/9103-
dc.description.abstractA new adaptive synchronization scheme by pragmatical asymptotically stability theorem is proposed in this paper. Based on this theorem and nonlinear control theory, a new adaptive synchronization scheme to design controllers can be obtained and especially the constraints for minimum values of feedback gain K in controllers can be derived. This new strategy shows that the constraint values of feedback gain K are related to the error of unknown and estimated parameters if the goal system is given. Through this new strategy, an appropriate feedback gain K can be always decided easily to obtain controllers achieving adaptive synchronization. Two identical Lorenz systems with different initial conditions and two completely different nonlinear systems with different orders, augmented Rossler's system and Mathieu-van der Pol system, are used for illustrations to demonstrate the efficiency and effectiveness of the new adaptive scheme in numerical simulation results.en_US
dc.language.isoen_USen_US
dc.subjectConstraints of feedback gainen_US
dc.subjectAdaptive synchronizationen_US
dc.subjectUncertain parametersen_US
dc.subjectNonlinear controlen_US
dc.subjectPragmatical asymptotically stability theoremen_US
dc.titlePragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11071-010-9847-7en_US
dc.identifier.journalNONLINEAR DYNAMICSen_US
dc.citation.volume64en_US
dc.citation.issue1-2en_US
dc.citation.spage77en_US
dc.citation.epage87en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000288254700007-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000288254700007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.